1	Why do people persist in sea-level rise threatened coastal regions? Empirical
2	evidence on risk aversion and place attachment

Accepted version

4

3

5 Authors: Ivo Steimanis¹, Matthias Mayer¹, Björn Vollan^{1*,}

Affiliations: ¹Department of Economics, Philipps University Marburg, Am Plan 1, 35032 Marburg,
 Germany

8 **ORCID:** Steimanis: 0000-0002-8550-4675, Mayer: 0000-0003-0323-9124, Björn Vollan: 0000-9 0002-5592-4185

10

11 Abstract: Climate change is projected to increase the number of extreme weather events, which may 12 lead to cascading impacts, feedbacks, and tipping points not only in the biophysical system but also 13 in the social system. To better understand societal resilience in risky environments, we analyzed 14 people's attachment to place, their willingness to take risks, and how these change in response to 15 extreme weather events. We conducted a survey with 624 respondents at the forefront of climate 16 change in Asia: the river deltas in Bangladesh and Vietnam. Our findings confirm that most people 17 prefer staying. Yet crucially, we find that (i) self-reported experiences of climate-related hazards are 18 associated with increased risk aversion and place attachment, reinforcing people's preferences to stay in hazardous environments; (ii) people with experiences of hazards are more likely aspiring to move 19 20 to high-income destinations, arguably being beyond the reach of their capacities; and (iii) changes in 21 aspirations to move abroad are connected to the changes in risk aversion and place attachment. The 22 fact that preferences are associated with cumulative experiences of hazards and interact with 23 aspirations to move to high-income destinations may contribute to our understanding of why so many 24 people stay in hazardous environments.

Keywords: Climate hazards, risk aversion, place attachment, international migration aspiration,
 societal resilience, trapped population

27

Acknowledgments: We are grateful to Abu Siddique and Max Burger for research assistance and collecting data in Bangladesh, Dat Nguyen for assistance in Vietnam, and all participants that agreed to take part in the surveys. We are especially grateful to our local research assistants in both study sites who significantly contributed to the success of the data collection and thereby the whole project. The Robert Bosch Foundation supported this project under the Grant number 32.5.F082.0001.0.

33 **Competing interests:** Authors declare no competing interests.

34 Data and materials availability: The replication package to reproduce the figures and regression models 35 presented in the main manuscript and supplementary information can be accessed via Github 36 (https://github.com/IvoSteimanis/migration-SLR) or zenodo (https://doi.org/10.5281/zenodo.5638671).

- 37 **Consent:** All participants gave their informed consent before starting with the survey interview.
- 38 Authorship contribution:
- IS: Conceptualization, Methodology, Software, formal analysis and visualization, Validation, writing –
 original draft, writing review & editing, project administration
- MM: Conceptualization, Methodology, Investigation, Software, formal analysis and visualization, writing –
 original draft, writing review & editing, project administration
- BV: Conceptualization, Methodology, supervision, funding acquisition, writing original draft, writing –
 review & editing
- 45

46 1 Introduction

47 Climate change, particularly sea-level rise (SLR) (Storlazzi et al., 2018; Vitousek et al., 2017), will alter the ecosystems of some of the world's most densely populated and economically active coastal 48 regions in the years to come (Church et al., 2013; Neumann et al., 2015; Nicholls and Cazenave, 49 50 2010). People living in these areas will be exposed to more climate-related hazards (Kharin et al., 51 2018) potentially occurring simultaneously (Zscheischler et al., 2018). Yet, there is a growing 52 consensus among scientists that most people prefer to adapt in-situ (Hauer et al., 2020) and it is 53 predicted that most people will move only within borders (Rigaud et al., 2018). While there is a 54 steadily growing literature on how climate change might erode people's financial ability to move 55 (Black et al., 2013; Groth et al., 2020) there is much less research exploring how people's preferences 56 are affected by increasing exposure to climate-related hazards, and how this, in turn, affects their 57 decisions to move or persist in place (Adams, 2016; Hunter et al., 2015). Taking the example of 58 aspirations to move, our research tries to better understand feedback loops between the natural and 59 social systems and especially how human motivations respond to an increasing number of extreme 60 events.

61 Two of the main reasons to stay in place at the individual level are people's strong place attachment (Adams, 2016; Esteban et al., 2019; Laurice Jamero et al., 2017) and risk aversion (Beine et al., 2020; 62 63 Goldbach and Schlüter, 2018; Jaeger et al., 2010). Place attachment refers to the bonds, emotions, 64 and feelings that people attach to their social-physical environment (Twigger-ross and Uzzell, 1996) and risk aversion is the inclination to choose a situation with certain outcomes (e.g., staying) over a 65 66 situation with more uncertainty yet with higher expected outcomes (e.g., moving to a new place)¹. While moving abroad can be highly beneficial both for individual wages and societal welfare 67 68 (Clemens et al., 2019), it is also perceived to be a costly and risky endeavor requiring a certain willingness to take risks (Bryan et al., 2014). The assumption of stable preferences has long been 69 70 applied to economic models (Stigler and Becker, 1977; West and McKee, 1983) supported by

¹ While different people perceive different aspects of life as risky, one might think that staying in a climate change hotspot being exposed to natural disasters is the riskier choice compared to moving to an urban area. However, this view neglects that the risk of moving is more immediate and comes with additional unpleasant uncertainty, including the loss of one's social networks, the lack of decent housing, potential unemployment, adjusting to urban life and different cultures, including the fear of failing.

71 empirical evidence in certain domains (Carlsson et al., 2014; Meier and Sprenger, 2015). Therefore, economic models mainly consider changes in financial and legal constraints to affect outcomes 72 73 paying less attention to social factors such as peoples' values, perceptions, and preferences (Adger et 74 al., 2009). However, co-evolutionary perspectives highlight that human behaviors are conditioned by 75 human biology, but cultural learning, experimentation, and imitation can change them (Norgaard, 76 1994). This "diffuse" co-evolutionary perspective not only focuses on genes but also on institutions, 77 technologies, values, and beliefs. Thus, risk preferences and place attachment might change with cumulative experiences of hazards, which contain information about the fragility of the environment 78 79 they live in.

80 In this paper, we study if international migration aspirations, place attachment, and risk aversion are 81 associated with climate-related hazards and how these preferences interact with aspirations. Thereby, 82 our study contributes to and tries to combine the literature on how disasters affect fundamental 83 economic preferences and the empirical literature on climate-induced migration. First, studies on the 84 impact of disasters show that risk aversion (Beine et al., 2020; Cameron and Shah, 2015; Cassar et al., 2017; Eckel et al., 2009; Page et al., 2014), time discounting (Bchir and Willinger, 2013; Callen, 85 86 2015; Cassar et al., 2017) and social preferences (Becchetti et al., 2017; Cassar et al., 2017; Fleming et al., 2014; Rao et al., 2011; Veszteg et al., 2015; Whitt and Wilson, 2007) can be affected by such 87 88 events. With regard to risk preferences the evidence suggests that people are temporarily more risk-89 tolerant directly after experiencing an environmental disaster (Eckel et al., 2009; Page et al., 2014), 90 while in the long run, they seem to become more risk-averse (Beine et al., 2020; Cameron and Shah, 91 2015; Cassar et al., 2017). Place attachment, on the other hand, is predominantly used as a predictor 92 or mediating variable to explain environmental risk perception, adaptation, and coping behavior 93 (Bonaiuto et al., 2016; De Dominicis et al., 2015; Mishra et al., 2010). Only a few studies examined 94 how place attachment itself might be influenced by the experience of natural disasters (Ruiz and 95 Hernández, 2014; Tanner, 2012; Willox et al., 2012). For example Ruiz and Hernández (2014) find 96 a decrease in place attachment after a volcanic eruption for people living in the area closest to the 97 eruption.

98 Second, a variety of methodologies have been used to study whether climatic factors lead people to 99 move away, with results ranging from increased migration to people being trapped (Beine and Jeusette, 2019; Berlemann and Steinhardt, 2017; Cattaneo et al., 2019)². A recent trend in the 100 101 literature is the depiction of migration decisions as the joint outcome of *aspiration* and *ability* to 102 move. This conceptual distinction proposed by Carling (2002) has been widely adopted by a broad range of scholars from different disciplines studying migration and conceptually expanded (Haas, 103 104 2021, 2010; Schewel, 2020) – (for an overview of the developments, see Carling and Schewel (2018). All these theoretical migration models have one feature in common: aspirations are the precondition 105 for migration which both interact with micro- (individual characteristics) and meso-/macro-level 106 107 factors such as the emigration environment (norms, social structures, political context, etc.). In a world of increasing migration barriers (costs, legal hurdles) migration desires often remain just that 108 109 - unfulfilled desires. However, this does not mean that these unfulfilled desires cannot have consequences for the people or communities they live in. We think that making the analytical 110 distinction between aspirations and ability underlying the migration decision is especially important 111 112 when trying to understand (future) climate-related migration – which can drastically change the migration environment through repeated climate hazards or slow-onsetting changes. Identifying 113 migration patterns based on past migration might not be very predictive of future climate-related 114 115 migration (Adger et al., 2021). Furthermore, past migrants differ from non-migrants regarding their 116 education (Drabo and Mbaye, 2015), wealth (Black et al., 2011; Bryan et al., 2014; Cattaneo and Peri, 117 2016), gender(Gray and Mueller, 2012; Mueller et al., 2014), risk aversion (Jaeger et al., 2010), 118 patience (Goldbach and Schlüter, 2018), uncertainty tolerance (Williams and Baláž, 2012), and social 119 network (Beine and Parsons, 2015; Haug, 2008, p. 200; Manchin and Orazbayev, 2018). If we want 120 to explain differences in international migration between more and less affected people by climate 121 hazards, we would mix both underlying processes of the migration decision (aspirations and ability)

² Studies vary in terms of data sources used to quantify migration (past flows or stocks vs. intentions using individual sample surveys), explanatory climatic variable (objective measures vs. self-reported perceived measures), samples (countries and time period), and the type of migration (internal, international). The field can be broadly categorized in macro and micro-level studies. First, the macro-level economic studies link migration flows and stocks between countries with long-term changes in temperatures and rainfall patterns (e.g. Beine and Parsons, 2015; Cai et al., 2016; Cattaneo and Peri, 2016). Thus, they have to aggregate the data on a coarse spatial area and focus on specific time periods. The problem here is that one cannot know whether the people who moved away were actually affected by the climatic event under investigation. Second, micro-level studies overcome this short-coming by focussing on the migration response to a specific shock such as heat (Mueller et al., 2014) or floods, cyclones and droughts (Bohra-Mishra et al., 2014; Gray and Mueller, 2012; Koubi et al., 2016b, 2016a) in a specific country or region.

122 when only looking at realized migration outcomes. For example, if more affected people would be more likely to aspire to move abroad than less affected people, yet are less likely to realize their 123 124 aspirations (e.g., because they formed unrealistic aspirations), then using only observed migration 125 outcomes we would wrongly conclude that climate hazards do not affect migration decisions. Lastly, 126 making the distinction between aspirations and the ability to migrate does not only help understand 127 migration patterns but also informs our understanding of why people stay. Therefore, recent empirical 128 papers have started analyzing data sets on migration intentions (Bertoli et al., 2020; Bertoli and 129 Ruyssen, 2018) and perceived exposure to climatic events (Bekaert et al., 2021; Parsons and Nielsen, 2021; Zander et al., 2019). For example, Bekaert et al. (2021) use the Gallup World Polls data which 130 offers individual-level survey data on migration intentions and self-reported exposure to extreme 131 events for 90 countries in 2010. They find that the probability to intend to migrate rises with exposure 132 133 to extreme events both within and across borders, especially the relative effects are largest for intentions to move across borders within the same region. 134

Our study seeks to go beyond the state of the art by combining these two strands of the literature 135 using a unique dataset of affected coastal populations in two countries. We report empirical evidence 136 137 from surveys conducted with people living in the Ganges Delta in Bangladesh (n=247) and the Mekong Delta in Vietnam (n=377). People living at these two densely populated sea-level rise 138 139 hotspots are continuously exposed to multiple climate-related hazards. Contrary to studies using 140 representative migration aspiration surveys (Bekaert et al., 2021; Bertoli et al., 2020; Migali and Scipioni, 2019) or studies with a focus on urban populations (Zander et al., 2019), we explicitly focus 141 142 on regions where people depend on livelihood practices (e.g. fishing and farming) that are highly 143 vulnerable to climate change. Based on respondents' recall of flooding, droughts, and storm surges 144 in the past five years, we categorize them into three distinct groups of (i) having experienced no hazards (n=171, 27%), (ii) one or two hazards (n=211, 34%) or (iii) three or more hazards (n=242, 145 146 39%). By exploiting information on individuals' affectedness by hazards within each village, we do 147 not measure the impact of hazards at the village level but at the individual level. This approach has 148 the strength of reducing selection bias as one compares individuals within a community with similar 149 context factors and not between communities that might differ in many dimensions. In addition, what 150 matters for people's behaviors is their risk perception which is shaped by their experiences of past 151 hazards (Grothmann and Patt, 2005; Wachinger et al., 2013). Bekaert et al. (2021) show that their 152 results hold even when controlling for objective measures of extreme events, highlighting how people 153 process climate change and extreme events can explain unique variations in peoples' (intended) 154 decisions to stay or persist (Hunter et al., 2015; Koubi et al., 2016b). Our results should be evaluated and interpreted cautiously for two reasons. First, they are correlations and not causal relationships as, 155 156 for example, it could be the case that risk aversion affects how people perceive and interpret the same 157 climate hazard. Second, the sample is only representative of sea-level rise affected regions in each country and may not extrapolate to the larger populations in Bangladesh and Vietnam or other coastal 158 159 regions.

160 2 Materials and methods

161 2.1 Study sites

Global sea levels are expected to rise between 0.54±0.19 meters and 0.71±0.28 meters until the end of the 21st century (Becker et al., 2012; Church et al., 2013). In tropical regions, however, changes can be up to 20 percent higher (Slangen et al., 2014), where a 10 to 20 cm rise in sea levels would already more than double the number of extreme events, such as large waves, storm surges, and coastal flooding (Vitousek et al., 2017).

167 Bangladesh's flat topography, low-lying coastal plain with 230 rivers and river branches, high 168 population density, and dire socio-economic situation in many regions make it one of the countries 169 most vulnerable to extreme climate events. Our study was conducted in the Barisal division in the Ganges Delta, where people are threatened by tropical storms, typically making landfall at least once 170 per year, cyclone-generated coastal floods, river floods, riverbank erosion, salinization of grounds, and 171 droughts which all are expected to worsen with rising temperatures (Auerbach et al., 2015). 172 Additionally, sea-level rise is expected to increase the severity of coastal flooding during storm surges 173 174 (Bhuiyan and Dutta, 2012) and tsunamis (Li et al., 2018), as well as accelerate coastal erosion and salinization (Nicholls and Cazenave, 2010; Smajgl et al., 2015). In the five years before our data 175 collection in 2018, the Barisal division was hit by three major cyclones in 2013, 2015, and 2016 as 176

177 well as two severe floods in 2014 and 2015 (EM-DAT, 2021). According to the latest census data on 178 population in the Barisal division in 2011, the Barisal division had a total population of almost 8.33 179 million and a growth rate of 1.71% compared to 2001 (BBS, 2015, 2011). Population growth is quite 180 high considering that only 60% of those who were born in the Barisal division still live there; 21% 181 went to Dhaka and 14% to Khulna in pursuit of business opportunities, to find work, better education, 182 or because of marriage (BBS, 2015). Latest predictions using agent-based modeling further suggest 183 that the population might actually increase in Bangladesh's coastal areas despite SLR (Bell et al., 2021). As of yet, environmental hazards did not seem to have resulted in widespread migration. 184 Although it might be difficult to clearly distinguish between environmental and economic reasons to 185 move, studies using mobile phone data found that extreme environmental events are more likely to 186 spark short-term movements instead of permanent migration flows (Lu et al., 2016). 187

Vietnam, also one of the most vulnerable countries to climate change, was ranked 6th place (three 188 189 places above Bangladesh) on the Global Climate Risk index in 2019 (Eckstein et al., 2019). Surveys were conducted in Ca Mau and Bac Lieu province in the Mekong Delta, which is highly exposed to 190 191 sea-level rise due to its extremely flat topography; most of the Delta lies less than 2 meters above the 192 current sea levels. In addition, the Delta itself seems to be sinking. Land subsidence between 0.35 to 1.4 meters on top of SLR of 0.07 to 0.14 meters is expected until 2050 (Erban et al., 2014). Extreme 193 194 weather events such as droughts, floods, and high-intensity tropical storms are expected to increase 195 (Nicholls et al., 2020). While most typhoons make landfall in Northern or Central Vietnam, they can 196 have devastating consequences if they make landfall in South Vietnam. For example, typhoon Linda 197 left 3,111 people dead, 383,000 people homeless, and caused estimated damage of over \$385 million (USD) in 1997 (Anh et al., 2017). Yet, the biggest threat comes from floods during storm surges and 198 high tides that coincide with the monsoon season. Already, water levels can rise by over one meter 199 200 during this time, causing regular flooding in the region (IMHEN, Ca Mau PPC, 2011). In the five years before our data collection in 2019, the provinces Ca Mau and Bac Lieu suffered from two major floods 201 in 2013 and 2017 (EM-DAT, 2021). Additionally, the Mekong Delta region is susceptible to severe 202 203 drought events with long-term durations. The most severe drought on record took place between 2015– 2016 (Guo et al., 2017). Whenever the flow of fresh water from rainfalls decreases in the dry season, 204

205 saline intrusion increases in the canals and rivers. Farmers adjust by shifting crops seasonally from 206 rice during the wet season to the considerably more risky shrimp production in the dry season. The 207 total population of Ca Mau and Bac Lieu provinces is 1.2 mission and 0.9 million respectively, with 208 an annual growth rate of 0.12% and 0.66% over the last 10 years (General Statistics Office (GSO), 2020). In 2019, the annual net migration rate for Ca Mau and Bac Lieu were 63 and 52 per 1,000 209 people respectively. According to the national migration survey, this out-migration is not driven by 210 211 environmental factors, but rather by young people (85% of all migrants are between 15 and 39) in 212 pursuit of economic possibilities, better education, or family-related factors (General Statistics Office (GSO), 2016). Recent studies using agent-based modeling to explain migration patterns suggest that 213 employment prospects and potential income accounted for 81% of the reasons people are considering 214 when deciding where to migrate to when leaving the Mekong Delta; education opportunities accounted 215 216 only for 13% and 5% respectively (Nguyen et al., 2021).

While the Ganges Delta in Bangladesh and the Mekong Delta in Vietnam are quite different in many regards, not just in their institutions, cultures, and socio-economic situation, they nevertheless face a similar exposure to rising sea levels due to the characteristics of major river deltas (Nicholls et al., 2020). Thus, in this study, we interviewed people from two very different contexts, yet who all face the same dilemma: staying in an increasingly hazardous area or moving away.

223 224 Notes: Own creation using shapefiles from Natural Earth in QGIS.

225 2.2 Sampling

Our study is not a comparative case study, nor is it representative of the entire population of 226 227 Bangladesh or Vietnam. Instead, we deliberately chose to conduct our study in remote areas that are most affected by SLR and where people are likely among the first to be displaced. We interviewed 228 247 respondents from 7 communities in the Barisal division, Bangladesh in August 2018, and 377 229 230 respondents from 9 communities in Ca Mau and Bac Lieu provinces, Vietnam in April 2019. 231 Respondents were sampled from communities with an average size of about 200 households. While 232 these rural communities mainly depend on agriculture, aquaculture, and fishing, they vary in their 233 distance to urban centers with populations greater than 100,000, ranging from 7 to 39 km in 234 Bangladesh and 6 to 77 km in Vietnam (see Fig. 1.)

235 In Bangladesh, research was conducted in cooperation with the BRAC Institute of Governance and Development (BIGD), who provided experienced enumerators and data on the affectedness of unions 236 237 in the Barisal division, guiding our preselection unions from which we randomly selected villages. In Vietnam, sampling was conducted by identifying a list of potential research sites based on their 238 exposure to rising sea levels and randomly selecting eight communities from the list of potential sites. 239 240 Respondents were randomly selected following a random walk procedure in each community, where 241 enumerators were given a random starting point from which they headed off in different directions 242 choosing either the left or right side of the street, interviewing a person from every third household, 243 and taking a left turn on every second corner. If a household was not available for the interview or rejected to participate, enumerators were instructed to go to the next household following the same 244 245 procedure. All surveys were translated into the local language (Bengali, Vietnamese) and carried out 246 with the support of tablets by local enumerators whom we trained and supervised throughout the data 247 collection. The interviews consisted of five parts: (i) personal characteristics, (ii) preference measures and scales, (iii) migration experience and aspirations, (iv) climate change perceptions, and (v) income 248 249 and wealth measures, and social networks. Respondents, aged 18 and older, earned on average \$3.6±1 in Bangladesh and \$7.3±2.6 in Vietnam for the 40 minutes long survey. Payments were adjusted to 250 the average daily wage of an unskilled laborer in each study site and converted using the purchasing 251 power parity (PPP) conversion factors from the World Bank to adjust for the relative price differences 252 253 between countries to buy goods and services.

254 2.3 Measurement of preferences, aspirations, and affectedness

Risk preferences: In Bangladesh, we used the well-established staircase method to elicit respondents' 255 256 risk attitudes which has been conducted with people in 76 countries (Falk et al., 2018, 2016). The staircase method confronts respondents with five consecutive binary choices between a save but lower 257 amount and a risky lottery with a 50% chance of winning nothing or a higher amount³. Depending on 258 259 the previous choice, respondents are then confronted with the next decision in the sequence, offering the same lottery with either a higher or lower sure amount. In this way, one can categorize respondents 260 from risk-averse to risk-loving. One of the five decisions was chosen at random at the end of the 261 survey to be relevant for payout. In Vietnam, we used a different well-established method to measure 262 respondents' risk attitudes, the Gneezy & Potters (1997) investment task. Respondents are endowed 263 264 with 20.000 VND and can decide how much they want to invest in a risky lottery (in steps of 1.000 VND) that pays with an equal chance three times the investment or nothing⁴. The amount that was 265 266 not invested plus the potential earnings from the lottery were paid out at the end of the survey. The 267 enumerators made sure that respondents understood the task before handing over the tablet and letting respondents make their investment decision using a slider on the touchscreen. Enumerators were 268 269 explicitly trained to give respondents space and not to observe the decision to minimize potential demand effects. 270

Both methods measure the same underlying construct of how willing people are to take monetary risks in similar ways and in the same specific domain. To better compare the two risk measurement tasks, we standardized both risk measures between zero and one. In the multivariate regressions, we use the standardized values (z-scores that indicate how far an observation is from the sample mean in standard deviations) to be able to compare effect sizes between risk attitudes and place attachment measurements.

³ The exact wording was as follows: "Please imagine the following situation: You can choose between a sure payment OR a lottery. The lottery gives you a 50 percent chance of receiving 240 Taka, with an equally high chance of receiving nothing. Now imagine you had to choose between the lottery and a sure payment. We will present to you five different situations. The lottery is the same in all situations. The sure payment is different in every situation. At the end of the survey, we would like to thank you for participating and give you a small compensation for your time. One of the following decisions will be chosen at random to determine your payout".

⁴ The exact wording was as follows: "You get 20,000 Dong from us at the end of the survey. Your task now is to decide how many Dong you want to keep and how much you would like to invest into a lottery. The lottery pays with 50 percent chance three times the amount you invested and with 50 percent chance your investment is lost. At the end of the survey, we pay you the earnings from this task."

277 Place attachment: Places are more than just providers of natural resources, space for leisure activities, and space for living. People associate memories, emotions, and feelings with the places and the 278 279 environment they live in. To measure these deeper meanings people have for places, we used a 12-280 item psychometric scale developed by Williams & Vaske (2003). This scale distinguishes between two dimensions of peoples' attachment to places: identity⁵ and dependence⁶. All items were translated 281 282 into the local language and then back to English to ensure the correctness of the meaning. The values 283 of Cronbach's alpha statistics, a measurement of interitem covariance, for both the place identity 284 (Cronbach's $\alpha_{\text{Bangladesh}}=0.73$; $\alpha_{\text{Vietnam}}=0.92$) and place dependence (Cronbach's $\alpha_{\text{Bangladesh}}=0.62$; $\alpha_{Vietnam}=0.92$) dimension indicate strong internal consistency of the scales Thus, the translated items 285 286 seem to have relatively strong construct validity indicating that they are associated with the underlying concepts of place identity and dependence. 287

288 Aspirations to move abroad: While migration aspirations are always hypothetic, it has been shown that such aspirations are not pure wishful thinking and are predictive for both taking preparations 289 (Ruyssen and Salomone, 2018) and actual migration (Tjaden et al., 2019). We opted for eliciting 290 291 respondents' current aspirations regarding moving to another country without explicitly distinguishing 292 between permanent or temporary movements or the amount of preparation they already took⁷. 293 However, we did ask respondents to name a specific destination they would aspire to move to and state 294 in an open-question the reasons for doing so. Based on respondents' answers, we can identify the 295 following migration aspirations: (i) staying, (ii) low-income destination, (iii) medium-income 296 destination, and (iv) high-income destination. Detailed information on the aspired destinations by study site, as well as the reasons for choosing these destinations and the perceived costs of moving 297 298 there, are reported in Supplementary Section S4.

⁵ "I feel that this place is a part of me."; "This place is very special to me."; "I identify strongly with this place."; "I am very attached to this place."; "Being at this place says a lot about who I am."; "This place means a lot to me."

⁶ "This place is the best place for what I like to do."; "No other place can compare to this place."; "I get more satisfaction out of being at this place than at any other."; "Doing what I do at this place is more important to me than doing it in any other place."; "I wouldn't substitute any other area for doing the types of things I do at this place."; "The things I do at this place I would enjoy doing just as much at a similar site."

⁷ The exact wording was as follows: "If you could migrate abroad, where (country) would you go and why (reasons)?")

299 Climate-related hazards & affectedness: We use self-reported variation in experiences of climaterelated weather events (droughts, flooding, and storms)⁸ to explain changes in risk preferences, place 300 301 attachment, and international migration aspirations that shape the decision to stay or leave hazardous 302 areas. We measured the experience of such hazards in a clearly defined time frame (five years) and 303 domain (they personally). On average, respondents reported having experienced 2.7 (Median = 2) 304 hazards, where for 26% of respondents the damages of the last hazard they experienced exceed their 305 monthly household income. Recall data of past events can be noisy and prone to measurement error, as people might differ in their ability to remember such events happening or their perception of what 306 constitutes an extreme hazard or not. If the self-reported experiences of hazards are measured with 307 308 random noise, then estimates are negatively biased towards zero. For simplicity and to reduce the 309 influence of outliers in reported hazards (one respondent reported 40 events in the last five years), we 310 decided to categorize respondents into three distinct groups: (i) not recalling any hazard (n=171, 27%), (ii) recalling one or two hazards (n=211, 34%) and (iii) recalling three and more hazards 311 312 (n=242, 39%). This categorization captures variation in perceived affectedness and vulnerability to 313 climate-related hazards across groups. Correlations between the categorical variable of hazards and individual perceptions of past and future severity of climate impacts are positive and highly 314 315 significant. Respondents that reported more hazards in the past five years are also more likely to 316 report that over the past 10 years cyclones (r=0.34, p=0.00) and heavy rainfalls (r=0.22, p=0.00) have become more frequent, sea-water was penetrating further inland (r=0.19, p=.00), higher sea-levels in 317 318 general (r=0.11, p=0.01) and more intense (r=0.16, p=0.00) but less frequent droughts (r=-0.22, p=0.00). The correlations are similar for respondents' beliefs whether the same impacts will become 319 320 even worse in the next five years. They also reported significantly higher damages (costs and effort) 321 to their houses after the last disaster (see Supplementary Table S2). Thus, these correlations suggest 322 that our key variable of interest likely picks up (cumulative) exposure to these impacts that also shape their future impact and risk perceptions. We believe that individual self-reports of climate hazards 323 324 likely better reflect individual's exposure to hazards than measures derived monitoring systems such as EM-DAT which are only available at higher administrative units. Our main reasoning why this is 325

⁸ Respondents were asked: "How many extreme weather events, such as floods, storms or droughts have you experienced in the last 5 years?"

the case is, that impacts caused by floods, the main reported hazard, can be very localized. Thus, data from EM-DAT cannot reflect an individuals' own nuanced experience of a hazard. For example, within the same village, a flood will affect households in low-lying areas more than those who are living on higher grounds or who invested in protective measures, i.e. building their house on stilts.

Supplementary Table S1 provides descriptive statistics of the non-standardized outcome measures and explanatory variables. Over half of our respondents are female (55%), are on average 41 years old, and have completed about seven years of formal schooling. On average, households consist of about five members that together earn around \$754 (median, PPP adjusted) per month. The climate change perception items show that respondents are highly aware of impacts and their consequences, indicating that they already seriously think about how to respond to these hazards.

336 2.4 Preference distributions and migration aspirations

We start with descriptively exploring if the distribution of attitudes towards risk, place identity, and 337 338 place dependence correlate with the reported experiences of climate-related hazards. Fig. 2, panels a to **c** show the estimated kernel densities of risk preferences, place identity, and place dependence for 339 340 respondents not recalling any, recalling one or two, and recalling three and more hazards in the last 5 341 vears. On average, respondents tend to be rather risk-averse than risk-loving (Mean_{risk}=0.59±0.37), 31% of respondents are even completely risk-averse on our measures. The distribution of risk 342 343 preferences for the two less exposed groups looks similar with two peaks at the extremes of the 344 distribution. However, having experienced three or more hazards appears to correlate with stronger risk aversion relative to the group that reported none (Kolmogorov-Smirnov (KS) Test D=0.17, 345 p=0.01), with an additional peak in the middle. Panel **b** and **c** showing place identity and place 346 highlight respondents' high levels 347 dependence of attachment (Mean_{identity}=0.85±0.17, Mean_{dependence}=0.69±0.18). Respondents who reported experiences of hazards seem to have a stronger 348 349 place identity, indicated by the significant shift of probability mass to the far right of the distribution for both groups (KS-Test; '1 or 2': D=0.13, p=0.07; '3 or more': D=0.16, p=0.02). Regarding the place 350 dependency dimension, we only observe a higher density for the group who reported one or two 351 352 hazards (KS-Test D=0.16, p=0.02) but not three and more (KS-Test D=0.05, p=0.97).

Fig. 2. Distribution of preferences and migration aspirations across groups

354 355 Notes: We plot the kernel density distributions of risk attitudes (panel **a**), place identity (panel **b**), and place dependence 356 (panel c) over the three groups based on the number of self-reported hazards experienced in the past five years. Panel d 357 shows respondents' migration aspirations. Besides, we asked respondents to self-assess all possible costs of moving to the 358 aspired destination, including their costs for living there during the first month. Based on aggregated costs of moving to 359 the aspired destination, we created three distinct groups of destinations: (i) low income (mainly India), (ii) medium income 360 (mainly Middle Eastern countries), and (iii) high-income (i.e., Europe, North America, East Asia). For details on the exact 361 aspired destination, see Supplementary Section S4. While individual estimates of these costs are noisy, aggregating them 362 reveals a realistic picture of migration costs. The average self-assessed migration costs strongly correlate (Pearson-363 correlation r=0.72, p=0.00) with legal labor migration costs estimated based on data from the 2009 Bangladesh household 364 remittance survey (IOM, 2010).

365 The communities and places people live in form important parts of their identities which they highly 366 value and understandably do not want to abandon easily. While people with high place attachment may aspire to form meaningful relationships and strong ties to their local community other people 367 368 might have different ambitions, desires, and aspirations for their life such as providing a good 369 education for their children, enjoying a higher living standard, or having better economic 370 opportunities (see Supplementary Table S19). For rural residents, migration might be the only 371 solution to reach these goals. First, we find that 38% (n=239) of respondents, state that they either 372 had no desire to move abroad or never actually thought about it (see panel d). The share of respondents 373 reporting no aspiration significantly decreases by 12 percentage points (pp) for respondents who reported three or more hazards (Pearson Chi²=5.67, p=0.02). Thus, cumulative experiences of 374 375 hazards seem to correlate with the desire to move abroad, especially to high-income destinations in North America, Europe, or East Asia for the most affected respondents (Pearson Chi²=7.23, p=0.01). 376 377 Of course, as indicated by respondents themselves, it is unlikely that they can realistically act on these

aspirations given the substantial financial and legal barriers to migrate to these high-income countries
(see Supplementary Figure S5). The aggregated self-assessed costs of moving to high-income
destinations exceed almost three times the respondents' average value of assets⁹.

381 2.5 Statistical analysis

In the following results section, we rely on multivariate least-square regressions for the preference outcomes. For migration aspirations, we use nonlinear functions to model the conditional probability function of the categorical dependent variable.

385 As one cannot randomly allocate people to be exposed to differing numbers of hazards, people may 386 differ in education or wealth, which can explain variation in the reporting of climate-related hazards. However, previous studies have provided evidence that changes in preferences are more than 387 388 correlations as they do not stem from selective exposure to disaster or selective out-migration in 389 response to such events, or other changes in the economic environment (Callen, 2015; Cassar et al., 390 2017). We do not find much evidence for selective exposure, as observed socioeconomic differences 391 do not explain much of the variation in the reported number of hazards (Adjusted R-squared = 0.01, 392 see Supplementary Table S4). In addition, 72% of respondents are still living in the same village they 393 were born in, and only 11% of respondents moved in the last 10 years. Thus, there was relatively little 394 in-migration going on in the recalled period. Restricting our analysis to only respondents who were 395 born in the village where we interviewed them, yields similar but less precise estimates due to the 396 exclusion of 28% of respondents from the analysis (see Supplementary Table S14). Supplementary 397 Table S3 shows some slight imbalances between groups in terms of income, where more affected 398 respondents have slightly higher incomes. We control for these imbalances and either include country 399 or village-fixed effects. With the fixed effects we want to remove unobserved heterogeneity between 400 villages in our data. The model with village fixed effects allows for the intercept variable to differ 401 across villages but the slope of the estimate to be constant across all observations. Especially for migration aspirations, we believe that unobserved variables that systematically differ between villages 402 could be correlated with the explanatory variables, and thus, biasing our results. In addition, we 403

⁹ A conservative estimate, assuming that respondents could sell all their movable and immovable for their self-assessed value.

404 account for the issue that the variance of the error term depends on the value of the independent 405 variable using Eicker–Huber–White heteroskedasticity robust standard errors. We estimate variations 406 of the following models for the different outcome variables, for example for the risk aversion model 407 we estimate:

 $Risk \ aversion(z - score)_i = \alpha_1 + \beta_1 Group(1 \ or \ 2) + \beta_2 Group(3 \ and \ more) + \beta_3 Controls_i + \beta_4 Damages_i + \beta_5 Z_i \varepsilon_{i1}$ 408 The coefficients β_1 and β_2 capture the effect of the dummy variables of having experienced "one or 409 410 two" and "three or more" hazards in standard deviations of the outcome variable relative to the omitted group that did not experience any hazard. The vector of $Controls_i$ includes a set of socio-economics: 411 412 gender, age, marital status, household size, education, household income, and wealth. We log-413 transform the reported income and asset values to reduce the influence of extreme outliers on the regression estimates. The vector of *Damages*, includes land lost to erosion and an index that captures 414 the costs caused by the last hazard to control for the potential effect on preferences because of reduced 415 416 wealth. As the self-reported measures of house rebuild frequency, effort, and costs are highly 417 correlated, we use principal component analysis to build a one-dimensional index that captures variation in these variables. Lastly, we control for potential unobserved differences at the village level 418 where the surveys were conducted by including a set of village dummies Z_i . 419

420 **3 Results**

In line with previous findings, we find that most respondents (66%, n=411) would only recommend in-situ adaptations to their peers and view moving away mainly as a last resort if all other adaptation strategies fail (see Supplementary Figure S1). Contrary to the depiction of a population trapped by their financial constraints (Black et al., 2013; Cattaneo and Peri, 2016; Nawrotzki and DeWaard, 2018) most of our respondents could afford moving to domestic urban centers or even to close-by countries assuming they could sell their assets (see Supplementary Figure S5). We start with analyzing if people's preferences and migration aspirations are affected by reported climate hazards.

428 3.1 Direct relation between hazards, preferences, and aspirations

429 Using multivariate regression analysis the descriptive results on distributions are confirmed, showing 430 that preferences are systematically associated with climate-related hazards when controlling for 431 socioeconomic differences across groups and the intensity of damages caused by the most recent 432 hazard (see Fig. 3). The interested reader can find the main regression tables reporting all coefficients 433 of the control variables in Supplementary Tables S5 (preferences) and S6 (migration aspirations). 434 Respondents who have reported one or two hazards are more risk-averse by 0.2 standard deviations 435 (SD) (β =0.20, p=0.06, 95CI=0.00, 0.41) and those who reported three and more by 0.23 SD (β =0.23, p=0.03, 95CI=0.03, 0.43) than respondents who reported none. These effects translate roughly into a 436 12% increase in risk aversion. In comparison, Cassar et al. (2017) find a 20% increase in risk aversion 437 five years after people experienced the extraordinary 2004 tsunami in Thailand. We find similar 438 439 effects on place identity, which is higher by 0.19 SD for respondents who reported one or two hazards $(\beta=0.19, p=0.08, 95CI=-0.03, 0.41)$ and by 0.29 SD for respondents who reported three and more 440 441 $(\beta=0.29, p=0.01, 95CI=0.07, 0.50)$. Place dependence, on the other hand, does not seem to correlate 442 in the same way as place identity with the number of experienced hazards. Respondents who reported 443 one or two hazards tend to have higher place dependence by 0.26 SD (β =0.26, p=0.01, 95CI=0.05, 0.47), while respondents who reported three and more hazards have place dependency levels 444 445 comparable to respondents who reported not having experienced any hazards (β =0.06, p=0.58, 446 95CI=-0.15, 0.27). Fig. 3, panel b confirms the descriptive results on aspirations showing that those people who reported three and more hazards are significantly more likely to have formed an aspiration 447 448 to move abroad, especially to high-income destinations (β =0.10, p=0.03, 95CI=0.01, 0.19). 449 Respondents who reported three and more hazards are 17 pp less likely to have no migration aspiration than respondents who reported none (β =-0.17, p=0.00, 95CI=-0.25, -0.08). 450

To sum up, cumulative experiences of climate-induced hazards not only seem to correlate with higher aspirations to move abroad but also with people's preferences. Respondents who report having experienced climate-induced hazards in the last 5 years tend to be more risk-averse and more attached to their place of living. Past research suggests that both stronger attachment (Adams, 2016) and higher risk aversion (Beine et al., 2020) should make it less likely for people to form aspirations to move abroad. Yet, we find the opposite, most strongly for respondents who report three and more hazards. This group seems to be more likely to aspire to move abroad, especially to high-income destinations, which are likely outside the scope of their capacities. In line with argumentation, we find that respondents with an aspiration to move abroad and who reported to have experienced more climate hazards self-evaluate their likelihood to act on these aspirations in the near future as significantly lower compared to less affected respondents (see Supplementary Figure S4).

462

463Effect size in SD / pp relative to no hazardsEffect size in SD / pp relative to no hazards464Notes: Plotted are the coefficients for respondents who reported having experienced one or two hazards (yellow) and465those who reported having experienced three and more hazards (red) on preferences (panel a) and aspirations (panel b)466with 95% (thin lines) and 90% (thick lines) confidence intervals. Control variables include land lost to erosion (=1), house467rebuild index (PCA), gender, age, marital status, education, household income (log+1), household wealth (log+1) proxied468by owned assets, and household size. In all models, we control for village fixed effects to account for unobserved469differences across communities that could affect outcomes.

470 3.2 Indirect relation of hazards and migration aspirations through preferences

Next, we explore whether changes in migration aspirations are connected to changes in risk preferences, place identity, and place dependence or whether these effects are independent of each other. We look at two aspiration outcomes: (i) do respondents aspire to move abroad, and (ii) is the aspired destination a high-income country. We estimate average marginal effects for respondents that did not experience any hazards, experienced one or two, or experienced three and more separately using a sample split¹⁰, controlling for factors likely shaping migration aspirations such as age,

¹⁰ As a robustness check, we use pooled linear probability models where we interact the hazard measure with each preference in a stepwise fashion (see Supplementary Table S17). The results for risk aversion are similar to the results from the sample split analysis. The significant joint F-tests of the interactions show that the effects of exposure to hazards on having any migration aspiration are modified by risk aversion and place attachment. Risk aversion still dampens the effect of having experienced more than three hazards on the aspiration to move abroad (and a high-income destination).

477 education, income, and wealth. For brevity, the non-significant effects for respondents that reported no hazards are reported in the supplementary section, not in the main text (see Supplementary Table 478 479 S15). The results indicate that more educated and wealthier respondents are more likely to aspire to 480 move to high-income destinations, which is in line with studies showing that successful migrants differ 481 significantly from the average population regarding their capacities (better educated (Drabo and Mbaye, 2015), wealthier (Black et al., 2011; Bryan et al., 2014; Cattaneo and Peri, 2016)). For 482 483 participants reporting three and more hazards, the results further suggest that the desire to move abroad 484 is significantly correlated with risk preferences, after controlling for the above-mentioned factors (see Fig. 4, panel a). A one SD increase in risk aversion is associated with a 7 pp lower likelihood to aspire 485 486 to move abroad for this group (β =-0.07, p=0.04, 95CI=-0.13, -0.00). While one might expect that with exposure to more flooding or storm surges uncertainty regarding the current location would rise, the 487 488 most affected respondents may also perceive the prospect of moving to another country as riskier rendering international migration as less desirable than adapting in-situ and waiting for a policy 489 490 solution. Similarly, we find that respondents who identify more strongly with their current location are 491 significantly more likely to aspire to move to high-income destinations, but again only for the group 492 that reported three and more hazards (see panel b). Cumulative experiences of hazards alter the 493 relationship between place identity and these aspirations, where a one SD increase in place identity is associated with an 11 pp increase in the likelihood of aspiring to move to a high-income destination 494 495 $(\beta = 0.11, p = 0.00, 95CI = 0.04, 0.18).$

To sum up, cumulative experiences of hazards not only affect preferences directly but also the relationship between preferences and international migration aspirations. In addition, we find some heterogeneous effects on migration aspirations depending on how far villages are away from the next urban center with more than 100,000 residents¹¹. Respondents from communities further away from urban centers tend to be significantly less likely to aspire to move to medium-income destinations with more experienced hazards compared to respondents living closer to urban centers (see Supplementary Table S18). Thus, respondents from peri-urban communities tend to have more

Regarding the interaction effect of place identity, we only find that place identity is associated with aspirations to move to a high-income country, but this is not significantly amplified with more frequent exposure to climate hazards.

¹¹ We thank the anonymous reviewer for the suggestion to investigate heterogeneous effects on migration aspirations depending on whether respondents live in more urban or rural areas.

realistic aspirations to medium-income countries than rural respondents which tend to aspire to move 503

504 to high-income destinations in our sample.

505

Fig. 4. Effect of hazards through preferences on aspirations

506 507 Notes: In panel a, the dependent variable is a dummy variable capturing whether the respondent stated an aspiration to 508 move abroad (=1) or not (=0). The dependent variable in panel **b** is a dummy variable capturing whether the respondent 509 aspires to move to a high-income destination (=1) or not (=0). Estimation results for respondents who reported having 510 experienced one or two hazards (yellow) and for respondents who reported having experienced three and more hazards 511 (red) are average marginal effects obtained from Probit regressions with 95% (thin lines) and 90% (thick lines) confidence 512 intervals. Additional control variables include land lost to erosion (=1), house rebuild index (PCA), gender, age, 513 education, household income (log+1), household wealth (log+1) proxied by owned assets, and household size. In all 514 models, we control for country-fixed effects. Full regression outputs, including the group that experience no hazards, are 515 reported in Supplementary Table S16.

516 3.3 Study limitations and robustness checks

517 Our results should be interpreted with caution for several reasons: (i) we measure aspirations to move internationally and not actual movements, (ii) we use self-reported measures of exposure to hazards, 518 519 and (iii) our sample is not representative of the population of Bangladesh or Vietnam, because we 520 specifically interviewed coastal populations that live in areas most affected by rising sea levels. First, 521 we acknowledge that migration aspirations are not a good proxy for actual migration flows (Abel, 522 2018). However, there is increasing empirical evidence that the same factors that shape migration 523 aspirations also affect subsequent steps such as migration intentions (Manchin and Orazbayev, 2018; Migali and Scipioni, 2019), preparations (Ruyssen and Salomone, 2018), and actual migration 524

525 (Creighton, 2013; Docquier et al., 2014; Tjaden et al., 2019). As highlighted by the two-step 526 approaches, actual migration is the joint outcome of aspirations and ability to move, where the latter 527 is clearly lacking among respondents in our sample as most will not have the means to act on their 528 aspirations to move abroad. We focused on (permanent) international migration aspiration for two 529 reasons: First, most of our respondents have the means to migrate domestically or to neighboring 530 countries but do not do so. Potentially, because they would only migrate if it would mean a substantial 531 improvement to them. Otherwise, they might stay in hazardous environments until they are forced to 532 leave, as highlighted by our conceptual model. Second, the media often speaks about climate migrants, and we wanted to show that those most affected are far from being able to move 533 internationally and that those fears are highly exaggerated and irrational. 534

535 Second, self-reported measures of perceived exposure to climate hazards are always prone to recall bias and measurement error. Recall bias might be less of a problem with low-frequency high-impact 536 537 events than in high-frequency data (Bell et al., 2019). Of more concern is that respondents report different numbers of hazards depending on individual social-psychological factors, which could be 538 539 consistent with the literature showing that climate risk perceptions are affect by personal experiences 540 of extreme weather events among socio-demographic and cultural factors (Van der Linden, 2015). Then, we would have a measure that captures the combined effect of perception and vulnerability to 541 542 an exogenous impact. Thus, self-reported experience of climatic events might not match real (or observed) extreme climatic events. However, Hunter et al. (2013) showed that aggregated self-543 544 reported measures of drought were strongly associated with objective measures of rainfall in 545 Australia. Similarly, Edwards et al. (2020) using a Filipino sample find that aggregated disaster 546 exposure also correlated well with disaster exposure using EM-DAT data. As we are interested in 547 cumulative and diverse hazards one cannot easily use an all-encompassing source of geo-data that 548 includes floods, typhoons, droughts, landslides, etc. Similarly, we do not have official data on 549 destroyed houses over these hazards, nor can we verify how our individual respondents were affected by these events as EM-DAT data are restricted to division levels. Nevertheless, we believe that self-550 551 reported individual exposure is a relevant and valid source of information for our research question. As a robustness check, we generate an individual-specific average exposure to climate hazards based 552

553 on other participants' reports of hazards in the same community. Our results for risk preferences are 554 robust to using the aggregate measure, while the association with place identity and dependence is 555 not (see Supplementary Table S14). However, this analysis is also less than ideal for two reasons. 556 First, the aggregate measure in this analysis could be imprecise as it assigns respondents who did not 557 report any experiences of hazards in the past five years on average with 2.6 hazards. We believe it is 558 very likely that some individuals remain largely unaffected by some hazards as they might have 559 prepared their belongings better or live at a safer place within the village that is less affected by winds 560 or floods. Second, the interpretation of the model is different as we cannot rule out village-specific characteristics through the inclusion of village fixed effects with the aggregate measure. While 561 individual reports of climate hazards are prone to outliers and potentially shaped by individual 562 563 characteristics, the aggregate measure takes away all variation of hazards within villages. We think 564 the grouping of reported hazards offers the best compromise to understand individual responses (risk aversion, place attachment, aspirations) by allowing individual variation in reported hazards within 565 communities while also rigorously constraining outliers to a maximum of "three and more". 566

Lastly, one might be concerned that people have moved between the occurrence of climate hazards 567 568 (we used the past five years) and the time when we interviewed them. This would be problematic if a large proportion moved and especially when these people were systematically less risk-averse and 569 570 attached to their communities. Since we would not have them in our survey, our results might then be 571 driven by a selection bias, only interviewing more risk-averse and place-attached people who remain in these hazardous areas. However, studies show that major out-migration did not happen yet (Adger 572 573 et al., 2021) and that people rather move temporarily and short distances to urban centers in response to fast-onset disasters like floods and cyclones (Lu et al., 2016), and return as soon as possible (Hauer 574 575 et al., 2020). At our study sites, the last disaster registered on EM-DAT took place 27 and 20 months before we conducted our surveys, in Bangladesh (cyclone) and Vietnam (flood) respectively. Thus, 576 most people will likely have returned to their villages and are included in our sample. In addition, 577 highlighting that the scope of out-migration cannot be that big, the population of Bangladesh's 578 579 coastlines is expected to increase (Bell et al., 2021). Those who do migrate seem to be manly young 580 people in pursuit of economic opportunities, better education, or marriages, not environmental 581 concerns (BBS, 2015; General Statistics Office (GSO), 2016; Nguyen et al., 2021). As a result, it 582 seems unlikely that our results are due to talking only to the most attached and risk-averse people.

583 Additional robustness checks are reported in Supplementary Section S3. We show that our results are not artifacts of pooling the data from both study sites by showing country-specific models using the 584 585 non-standardized outcomes (Table S7 to Table S9). Our results for Bangladesh are robust to using a binary specification of the risk measure estimated using probit regression models showing that the 586 587 clustering of observations at the extremes is not driving the results in the pooled analysis (Table S12, 588 model 3). We use different models to account for censoring of measures at the extremes of our scales 589 of risk attitudes and place attachment (Table S11), use appropriate models that account for the fact that most of our outcomes variables are not continuous (Table S12), and use seemingly unrelated 590 regressions (SURE) to account for the correlation between the two dimensions of place attachment 591 592 (Table S10). Lastly, we look at heterogeneous effects across hazard groups depending on preferences 593 (Table S16 & Table S17) and the distance of communities to the next urban center (Table S18).

594 **4** Discussion and Conclusions

An increasing number of case studies on climate mobility have highlighted that it is important to 595 understand the reasons why people - voluntary or involuntary - stay in hazardous areas (Adams, 2016; 596 Esteban et al., 2019; Laurice Jamero et al., 2017). Changes in fundamental preferences (Becchetti et 597 598 al., 2017; Beine et al., 2020; Cameron and Shah, 2015; Cassar et al., 2017) and migration intentions 599 (Adger et al., 2021; Bekaert et al., 2021; Bertoli et al., 2020) in response to climate change are increasingly studied, however, to the best of our knowledge no studies combine these two strands of 600 601 the literature to understand how changing risk preferences and place attachment affect (im-)mobility. 602 One fundamental economic preference is the attitude towards risk which affects many important life decisions. In this study, we find that people who reported exposure to more climate-related hazards 603 604 tend to be more risk-averse (Fig. 3) which looked at in isolation may already be worrying. Poverty has been associated with risk-averse decision-making, perpetuating poverty (see Haushofer & Fehr, 605 2014 for a review). Risk-averse farmers are less likely to adopt new technologies or diversify their 606 607 incomes (Alemayehu et al., 2018), potentially further solidifying their state of poverty (Liu and 608 Huang, 2013). Likewise, we find that respondents who are more risk-averse are less likely to aspire to move abroad (Fig. 4, panel a). In addition, place identity, a central component for why people 609 610 persist in hazardous environments (Adams, 2016), seems to be higher for respondents who 611 experienced more climate-related hazards. Again, this result in isolation may already be worrying as 612 it might prolong the time people remain in hazardous environments. Yet, for the most affected 613 respondents in our sample, this increase in place identity seems to be associated with a higher 614 likelihood to have an aspiration to move to a high-income destination (Fig. 4, panel b). While aspiring 615 below one's actual potential has been called a potential cause for poverty traps (Appadurai, 2004; Baneriee et al., 2006, pp. 409–421), less is known about the effects of aspiring beyond one's potential. 616 617 Evidence shows that people with unrealistic life goals in terms of education or income tend to be 618 rather demotivated to work towards their goals and are unlikely to reach them (Genicot and Ray, 619 2017; Ross, 2019). Given that most respondents could not afford to move to high-income destinations, having these unrealistic aspirations might lead them to neglect closer and more affordable migration 620 destinations. 621

622 Our results suggest that the experiences of floods or droughts can directly affect people's preferences and aspirations. With increasing experiences of hazards, in our sample of three or more events, 623 preferences start to explain variation in migration aspirations. Higher place identity correlates with 624 625 the aspirations to move to high-income countries while risk aversion is associated with lower aspirations to move at all. This interplay of preferences and migration aspirations is illustrated 626 schematically in Fig. 5 to illustrate potential pathways of societal resilience to an increasing number 627 628 of extreme events. In essence, we assume people to form migration aspirations based on their subjective comparison of perceived net benefits from staying against perceived net benefits from 629 630 leaving (panel a). While staying in a hazardous environment comes at the risk of suffering from 631 climate hazards, people also derive benefits from staying, such as their attachment to place, established social networks, the comfort of the familiar, as well as other intangible values. Thus, the 632 633 perceived net benefits we refer to include the sum of all costs and benefits relevant to the individual. 634 Leaving a hazardous area comes with the benefit of being less exposed to adverse events as well as benefits derived from living at the new destination, e.g., higher wages or access to better education 635

636 and healthcare. While moving to a high-income country might be associated with higher benefits 637 overall, the likelihood of success, e.g., being permitted and finding a permanent job, is much lower 638 than in low- or middle-income countries. In our schematic representation, people will only form 639 aspirations to migrate if their perceived net benefits of leaving are higher than their perceived net 640 benefits of staving. We illustrate this in Fig. 5, panel a ("stable preferences"), where the destination-641 specific net benefits of low-, middle-, and high-income would all exceed the minimal additional 642 benefits necessary (MAB) to form an aspiration to move, indicated by the horizontal dashed-line. All 643 illustrated benefits are purely exemplary to illustrate how co-evolving preferences might affect 644 aspirations to move abroad. Stable preferences relate to the theoretical assumption, often made in economics, that preferences are independent of hazard and changes in behavior are only explained by 645 changes in budget constraints. 646

647 In Fig. 5, panel a ("co-evolving preferences"), we introduce the preference shift we observe in our 648 data, where higher place attachment and risk aversion are associated with accumulative exposure to 649 climate-induced hazards. First, we speculate that stronger place attachment will increase the 650 perceived benefits of staying as the bonds to the place and people are now perceived to be more 651 important. Thus, all else equal, an increase in place attachment would widen the wedge between perceived net benefits of staying and perceived net benefits of leaving in comparison to stable 652 653 preferences, as indicated by an increase in the minimal additional benefit (MAB'). Consequently, people would be more likely to consider places where the perceived benefits are large enough to 654 exceed the wedge created by the change in preferences. This might explain our finding in Fig. 4b that 655 656 for respondents who report having experienced multiple hazards, place identity is associated with an increase in aspiring to move to a high-income destination. Second, respondents who experienced 657 climate-induced hazards reported a higher risk aversion. In our representation, an increase in risk 658 659 aversion would lower the perceived benefits of all risky outcomes. Given that moving abroad is perceived to be risky, the destination-specific benefits would decrease (L'Low, L'Med, L'High), and 660 people would be less likely to form aspirations with potentially only high-income destinations 661 662 exceeding the required MAB' (see our results in Fig. 4a).

663 Fig. 5. Stylized impact of co-evolving preferences on migration aspirations and long-term implications

B Stylized illustration of long-term challenges related to co-evolving preferences

664 665

Notes: Panel A illustrates the interaction of destination independent and dependent benefits of staying and leaving, assuming either stable or co-evolving preferences. Panel B shows the potential long-term implications of co-evolving preferences in terms of the minimal additional benefits that people would require to consider leaving and the total number of people staying in hazardous areas including the resulting risk of forced displacement by gradual climate impacts.

669 The importance of our study can be seen when extrapolating our findings and the above representation 670 in the future (Fig. 5, panel b). Over time, and in line with the latest projections, people will be 671 increasingly exposed to climate-induced hazards. Assuming preferences are stable (green dotted line) only the destination independent benefits (L) of leaving a risky environment would increase. In our 672 673 representation, this would imply a decrease in the minimal additional benefits (MAB) people require 674 before aspiring to move. However, when people are continuously exposed to natural disasters and preferences are not stable but co-evolve, indicated by the red dashed line, risk-aversion and place 675 676 attachment could increase with experiencing floods or storm surges and thus further increase the MAB 677 required for leaving. Potentially, this might result in a high number of people being at risk of 678 displacement.

Thus, co-evolving preferences might prolong the time people remain in hazardous places where they are increasingly exposed to immediate impacts by climate-related hazards and gradual impacts, 681 accelerating the risk for socioeconomically marginalized households to eventually lose their ability to 682 move abroad. Those who do not form aspirations to move abroad might still have to adapt by carrying 683 out small movements to other risky, low-productive close-by locations once the place they live at 684 becomes uninhabitable. There is now a strong need for developing anticipatory governance regimes to identify affected communities at risk of (further) falling into poverty and being exposed to an 685 686 increasing number of climate-related hazards. As feelings of identification with the community are 687 central to the decision to stay or leave, any resettlement plan should be designed as a participatory process. As people might reject relocation unless the perceived destination-specific benefits are 688 689 sufficiently large, it is important to offer decent housing, good job opportunities, and public services 690 at the new destination, as well as emphasizing the benefits of leaving the hazardous environment to 691 enhance participation.

692 **References**

- Abel, G.J., 2018. Estimates of Global Bilateral Migration Flows by Gender between 1960 and 20151.
 International Migration Review 52, 809–852. https://doi.org/10.1111/imre.12327
- Adams, H., 2016. Why populations persist: mobility, place attachment and climate change. Popul
 Environ 37, 429–448. https://doi.org/10.1007/s11111-015-0246-3
- Adger, W.N., Campos, R.S. de, Codjoe, S.N.A., Siddiqui, T., Hazra, S., Das, S., Adams, H., Gavonel,
 M.F., Mortreux, C., Abu, M., 2021. Perceived environmental risks and insecurity reduce
 future migration intentions in hazardous migration source areas. One Earth 4, 146–157.
 https://doi.org/10.1016/j.oneear.2020.12.009
- Adger, W.N., Dessai, S., Goulden, M., Hulme, M., Lorenzoni, I., Nelson, D.R., Naess, L.O., Wolf,
 J., Wreford, A., 2009. Are there social limits to adaptation to climate change? Climatic
 Change 93, 335–354. https://doi.org/10.1007/s10584-008-9520-z
- Alemayehu, M., Beuving, J., Ruben, R., 2018. Risk Preferences and Farmers' Livelihood Strategies:
 A Case Study from Eastern Ethiopia. Journal of International Development 30, 1369–1391.
 https://doi.org/10.1002/jid.3341
- Anh, L.T., Takagi, H., Thao, N.D., Esteban, M., 2017. Investigation of Awareness of Typhoon and
 Storm Surge in the Mekong Delta Recollection of 1997 Typhoon Linda. J. JSCE Ser.
 B3 73, I 168-I 173. https://doi.org/10.2208/jscejoe.73.I 168
- Appadurai, A., 2004. The Capacity to Aspire: Culture and the Terms of Recognition. Culture and
 Public Action.
- Auerbach, L.W., Goodbred Jr, S.L., Mondal, D.R., Wilson, C.A., Ahmed, K.R., Roy, K., Steckler,
 M.S., Small, C., Gilligan, J.M., Ackerly, B.A., 2015. Flood risk of natural and embanked
 landscapes on the Ganges–Brahmaputra tidal delta plain. Nature Climate Change 5, 153–157.
 https://doi.org/10.1038/nclimate2472
- Banerjee, A.V., Benabou, R., Mookherjee, D., 2006. Understanding Poverty. Oxford University
 Press.
- BBS, 2015. Population Distribution and Internal Migration in Bangaldesh. Bangladesh Bureau of
 Statistics (BBS).
- 720 BBS, 2011. Census Reports 2011. Bangladesh Bureau of Statistics (BBS).

- Bchir, M.A., Willinger, M., 2013. Does the exposure to natural hazards affect risk and time
 preferences? Some insights from a field experiment in Perú (Working Paper). LAMETA,
 University of Montpellier.
- Becchetti, L., Castriota, S., Conzo, P., 2017. Disaster, Aid, and Preferences: The Long-run Impact of
 the Tsunami on Giving in Sri Lanka. World Development 94, 157–173.
 https://doi.org/10.1016/j.worlddev.2016.12.014
- Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., Delcroix, T., 2012. Sea level
 variations at tropical Pacific islands since 1950. Global and Planetary Change 80–81, 85–98.
 https://doi.org/10.1016/j.gloplacha.2011.09.004
- Beine, M., Charness, G., Dupuy, A., Joxhe, M., 2020. Shaking Things Up: On the Stability of Risk
 and Time Preferences (SSRN Scholarly Paper No. ID 3570289). Social Science Research
 Network, Rochester, NY.
- Beine, M., Jeusette, L., 2019. A Meta-Analysis of the Literature on Climate Change and Migration
 (DEM Discussion Paper Series). Department of Economics at the University of Luxembourg.
- Beine, M., Parsons, C., 2015. Climatic Factors as Determinants of International Migration. The
 Scandinavian Journal of Economics 117, 723–767. https://doi.org/10.1111/sjoe.12098
- Bekaert, E., Ruyssen, I., Salomone, S., 2021. Domestic and international migration intentions in
 response to environmental stress: A global cross-country analysis. Journal of Demographic
 Economics 87, 383–436. https://doi.org/10.1017/dem.2020.28
- Bell, A., Ward, P., Tamal, Md.E.H., Killilea, M., 2019. Assessing recall bias and measurement error
 in high-frequency social data collection for human-environment research. Popul Environ 40,
 325–345. https://doi.org/10.1007/s11111-019-0314-1
- Bell, A.R., Wrathall, D.J., Mueller, V., Chen, J., Oppenheimer, M., Hauer, M., Adams, H.J., Kulp,
 S., Clark, P., Fussell, E., Magliocca, N., Xiao, T., Gilmore, E., Abel, K., Call, M., Slangen,
 A.B.A., 2021. Migration towards Bangladesh coastlines projected to increase with sea-level
 rise through 2100. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abdc5b
- Berlemann, M., Steinhardt, M.F., 2017. Climate Change, Natural Disasters, and Migration—a Survey
 of the Empirical Evidence. CESifo Econ Stud 63, 353–385.
 https://doi.org/10.1093/cesifo/ifx019
- Bertoli, S., Docquier, F., Rapoport, H., Ruyssen, I., 2020. Weather Shocks and Migration Intentions
 in Western Africa: Insights from a Multilevel Analysis (Working Paper No. 8064). CESifo
 Working Paper.
- Bertoli, S., Ruyssen, I., 2018. Networks and migrants' intended destination. J Econ Geogr 18, 705–
 728. https://doi.org/10.1093/jeg/lby012
- Bhuiyan, Md.J.A.N., Dutta, D., 2012. Analysis of flood vulnerability and assessment of the impacts
 in coastal zones of Bangladesh due to potential sea-level rise. Nat Hazards 61, 729–743.
 https://doi.org/10.1007/s11069-011-0059-3
- Black, R., Adger, W.N., Arnell, N.W., Dercon, S., Geddes, A., Thomas, D., 2011. The effect of
 environmental change on human migration. Global Environmental Change, Migration and
 Global Environmental Change Review of Drivers of Migration 21, S3–S11.
 https://doi.org/10.1016/j.gloenvcha.2011.10.001
- Black, R., Arnell, N.W., Adger, W.N., Thomas, D., Geddes, A., 2013. Migration, immobility and
 displacement outcomes following extreme events. Environmental Science & Policy, Global
 environmental change, extreme environmental events and "environmental migration":
 exploring the connections 27, S32–S43. https://doi.org/10.1016/j.envsci.2012.09.001
- Bohra-Mishra, P., Oppenheimer, M., Hsiang, S.M., 2014. Nonlinear permanent migration response
 to climatic variations but minimal response to disasters. PNAS 111, 9780–9785.
 https://doi.org/10.1073/pnas.1317166111
- Bonaiuto, M., Alves, S., De Dominicis, S., Petruccelli, I., 2016. Place attachment and natural hazard
 risk: Research review and agenda. Journal of Environmental Psychology 48, 33–53.
 https://doi.org/10.1016/j.jenvp.2016.07.007
- Bryan, G., Chowdhury, S., Mobarak, A.M., 2014. Underinvestment in a Profitable Technology: The
 Case of Seasonal Migration in Bangladesh. Econometrica 82, 1671–1748.
 https://doi.org/10.3982/ECTA10489
- Cai, R., Feng, S., Oppenheimer, M., Pytlikova, M., 2016. Climate variability and international migration: The importance of the agricultural linkage. Journal of Environmental Economics and Management 79, 135–151. https://doi.org/10.1016/j.jeem.2016.06.005

- Callen, M., 2015. Catastrophes and time preference: Evidence from the Indian Ocean Earthquake.
 Journal of Economic Behavior & Organization, Economic Experiments in Developing
 Countries 118, 199–214. https://doi.org/10.1016/j.jebo.2015.02.019
- Cameron, L.A., Shah, M., 2015. Risk-taking behavior in the wake of natural disasters. Journal of
 human resources : JHR, Journal of human resources : JHR. Madison, Wis : University of
 Wisconsin Press, ISSN 0022-166X, ZDB-ID 2191921. Bd. 50.2015, 2, S. 484-515 50.
- Carling, J., 2002. Migration in the age of involuntary immobility: Theoretical reflections and Cape
 Verdean experiences. Journal of Ethnic and Migration Studies 28, 5–42.
 https://doi.org/10.1080/13691830120103912
- Carling, J., Schewel, K., 2018. Revisiting aspiration and ability in international migration. Journal of
 Ethnic and Migration Studies 44, 945–963. https://doi.org/10.1080/1369183X.2017.1384146
- Carlsson, F., Johansson-Stenman, O., Nam, P.K., 2014. Social preferences are stable over long
 periods of time. Journal of Public Economics 117, 104–114.
 https://doi.org/10.1016/j.jpubeco.2014.05.009
- Cassar, A., Healy, A., von Kessler, C., 2017. Trust, Risk, and Time Preferences After a Natural
 Disaster: Experimental Evidence from Thailand. World Development 94, 90–105.
 https://doi.org/10.1016/j.worlddev.2016.12.042
- Cattaneo, C., Beine, M., Fröhlich, C.J., Kniveton, D., Martinez-Zarzoso, I., Mastrorillo, M., Millock,
 K., Piguet, E., Schraven, B., 2019. Human Migration in the Era of Climate Change. Rev
 Environ Econ Policy 13, 189–206. https://doi.org/10.1093/reep/rez008
- Cattaneo, C., Peri, G., 2016. The migration response to increasing temperatures. Journal of
 Development Economics 122, 127–146. https://doi.org/10.1016/j.jdeveco.2016.05.004
- Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., Merrifield,
 M.A., Milne, G.A., Nerem, R.S., Nunn, P.D., Payne, A.J., Pfeffer, W.T., Stammer, D.,
 Unnikrishnan, A.S., 2013. Sea-Level Rise by 2100. Science 342, 1445–1445.
 https://doi.org/10.1126/science.342.6165.1445-a
- Clemens, M.A., Montenegro, C.E., Pritchett, L., 2019. The Place Premium: Bounding the Price
 Equivalent of Migration Barriers. The Review of Economics and Statistics 101, 201–213.
- Creighton, M.J., 2013. The role of aspirations in domestic and international migration. The Social
 Science Journal 50, 79–88. https://doi.org/10.1016/j.soscij.2012.07.006
- B08 De Dominicis, S., Fornara, F., Ganucci Cancellieri, U., Twigger-Ross, C., Bonaiuto, M., 2015. We
 are at risk, and so what? Place attachment, environmental risk perceptions and preventive
 coping behaviours. Journal of Environmental Psychology 43, 66–78.
 B11 https://doi.org/10.1016/j.jenvp.2015.05.010
- B12 Docquier, F., Peri, G., Ruyssen, I., 2014. The Cross-country Determinants of Potential and Actual
 B13 Migration. International Migration Review 48, 37–99. https://doi.org/10.1111/imre.12137
- Brabo, A., Mbaye, L.M., 2015. Natural disasters, migration and education: an empirical analysis in
 developing countries. Environment and Development Economics 20, 767–796.
 https://doi.org/10.1017/S1355770X14000606
- Eckel, C.C., El-Gamal, M.A., Wilson, R.K., 2009. Risk loving after the storm: A Bayesian-Network
 study of Hurricane Katrina evacuees. Journal of Economic Behavior & Organization,
 Individual Decision-Making, Bayesian Estimation and Market Design: A Festschrift in honor
 of David Grether 69, 110–124. https://doi.org/10.1016/j.jebo.2007.08.012
- Eckstein, D., Hutfils, M.-L., Winges, M., 2019. Global Climate Risk Index 2019: Who Suffers Most
 From Extreme Weather Events? Weather-related Loss Events in 2017 and 1998 to 2017 (No.
 14). Germanwatch e.V., Bonn.
- Edwards, B., Gray, M., Borja, J.B., 2020. The Impact of Natural Disasters on Violence, Mental
 Health, Food Insecurity, and Stunting in the Philippines: Findings from the Longitudinal
 Cohort Study on the Filipino Child (SSRN Scholarly Paper No. ID 3520059). Social Science
 Research Network, Rochester, NY. https://doi.org/10.2139/ssrn.3520059
- 828 EM-DAT, 2021. The CRED/OFDA International Disaster Database.
- Erban, L.E., Gorelick, S.M., Zebker, H.A., 2014. Groundwater extraction, land subsidence, and sealevel rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 9, 084010.
 https://doi.org/10.1088/1748-9326/9/8/084010
- Esteban, M., Jamero, Ma.L., Nurse, L., Yamamoto, L., Takagi, H., Thao, N.D., Mikami, T., Kench,
 P., Onuki, M., Nellas, A., Crichton, R., Valenzuela, V.P., Chadwick, C., Avelino, J.E., Tan,
 N., Shibayama, T., 2019. Adaptation to sea level rise on low coral islands: Lessons from recent

Management 168, 835 Ocean & Coastal 35-40. events. 836 https://doi.org/10.1016/j.ocecoaman.2018.10.031 Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D., Sunde, U., 2018. Global Evidence on 837 Economic Preferences. Q J Econ 133, 1645–1692. https://doi.org/10.1093/qje/qjy013 838 839 Falk, A., Becker, A., Dohmen, T., Huffman, D., Sunde, U., 2016. The Preference Survey Module: A 840 Validated Instrument for Measuring Risk, Time, and Social Preferences (Working Paper No. 2016–003). Human Capital and Economic Opportunity Working Group. 841 Fleming, D.A., Chong, A., Bejarano, H.D., 2014. Trust and Reciprocity in the Aftermath of Natural 842 843 Disasters. The Journal Development Studies 50, 1482-1493. of 844 https://doi.org/10.1080/00220388.2014.936395 845 General Statistics Office (GSO), 2020. Complete Results of the 2019 Viet Nam Population and Houshing Census. Statistical Publishing House. 2020, Vietnam. 846 847 General Statistics Office (GSO), 2016. The 2015 national internal migration survey: major findings. 848 Vietnam News Agency Publishing House, Vietnam. Genicot, G., Ray, D., 2017. Aspirations and Inequality. Econometrica 85, 489-519. 849 https://doi.org/10.3982/ECTA13865 850 Gneezy, U., Potters, J., 1997. An Experiment on Risk Taking and Evaluation Periods. Q J Econ 112, 851 852 631–645. https://doi.org/10.1162/003355397555217 853 Goldbach, C., Schlüter, A., 2018. Risk aversion, time preferences, and out-migration. Experimental 854 evidence from Ghana and Indonesia. Journal of Economic Behavior & Organization 150, 132-148. https://doi.org/10.1016/j.jebo.2018.04.013 855 Grav, C.L., Mueller, V., 2012. Natural disasters and population mobility in Bangladesh. PNAS 109, 856 857 6000-6005. https://doi.org/10.1073/pnas.1115944109 858 Groth, J., Ide, T., Sakdapolrak, P., Kassa, E., Hermans, K., 2020. Deciphering interwoven drivers of 859 environment-related migration – A multisite case study from the Ethiopian highlands. Global 860 Environmental Change 63, 102094. https://doi.org/10.1016/j.gloenvcha.2020.102094 Grothmann, T., Patt, A., 2005. Adaptive capacity and human cognition: The process of individual 861 climate change. Global Environmental Change 862 adaptation to 15, 199–213. 863 https://doi.org/10.1016/j.gloenvcha.2005.01.002 Guo, H., Bao, A., Liu, T., Ndayisaba, F., He, D., Kurban, A., De Maeyer, P., 2017. Meteorological 864 Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS 865 Product. Sustainability 9, 901. https://doi.org/10.3390/su9060901 866 Haas, H. de, 2021. A theory of migration: the aspirations-capabilities framework. Comparative 867 Migration Studies 9, 8. https://doi.org/10.1186/s40878-020-00210-4 868 869 Haas, H. de, 2010. The Internal Dynamics of Migration Processes: A Theoretical Inquiry. Journal of 870 Ethnic and Migration Studies 36, 1587-1617. https://doi.org/10.1080/1369183X.2010.489361 871 Hauer, M.E., Fussell, E., Mueller, V., Burkett, M., Call, M., Abel, K., McLeman, R., Wrathall, D., 872 873 2020. Sea-level rise and human migration. Nature Reviews Earth & Environment 1, 28–39. 874 https://doi.org/10.1038/s43017-019-0002-9 875 Haug, D.S., 2008. Migration Networks and Migration Decision-Making. Journal of Ethnic and 876 Migration Studies 34, 585–605. https://doi.org/10.1080/13691830801961605 877 Haushofer, J., Fehr, E., 2014. On the psychology of poverty. Science 344, 862-867. 878 https://doi.org/10.1126/science.1232491 879 Hunter, B., Gray, M., Edwards, B., 2013. The Use of Social Surveys to Measure Drought and the 880 Impact of Drought. Soc Indic Res 113, 419–432. https://doi.org/10.1007/s11205-012-0102-0 881 Hunter, L.M., Luna, J.K., Norton, R.M., 2015. Environmental Dimensions of Migration. Annu. Rev. 882 Sociol. 41, 377–397. https://doi.org/10.1146/annurev-soc-073014-112223 IMHEN, Ca Mau PPC, 2011. Climate Change Impact and Adaptation Study in the Mekong Delta Ca 883 884 Mau Atlas. Institute of Meteorology, Hydrology and Environment (IMHEN), Ha Noi, 885 Vietnam. IOM, 2010. The Bangladesh Household Remittance Survey 2009 (Summary Report). International 886 887 Organization on Migration (IOM), Bangladesh, Dhaka. Jaeger, D.A., Dohmen, T., Falk, A., Huffman, D., Sunde, U., Bonin, H., 2010. Direct Evidence on 888 Risk Attitudes and Migration. The Review of Economics and Statistics 92, 684-689. 889

- Kharin, V.V., Flato, G.M., Zhang, X., Gillett, N.P., Zwiers, F., Anderson, K.J., 2018. Risks from
 Climate Extremes Change Differently from 1.5°C to 2.0°C Depending on Rarity. Earth's
 Future 6, 704–715. https://doi.org/10.1002/2018EF000813
- Koubi, V., Spilker, G., Schaffer, L., Bernauer, T., 2016a. Environmental Stressors and Migration:
 Evidence from Vietnam. World Development 79, 197–210.
 https://doi.org/10.1016/j.worlddev.2015.11.016
- Koubi, V., Stoll, S., Spilker, G., 2016b. Perceptions of environmental change and migration decisions.
 Climatic Change 138, 439–451. https://doi.org/10.1007/s10584-016-1767-1
- Laurice Jamero, Ma., Onuki, M., Esteban, M., Billones-Sensano, X.K., Tan, N., Nellas, A., Takagi,
 H., Thao, N.D., Valenzuela, V.P., 2017. Small-island communities in the Philippines prefer
 local measures to relocation in response to sea-level rise. Nature Climate Change 7, 581–586.
 https://doi.org/10.1038/nclimate3344
- Li, L., Switzer, A.D., Wang, Y., Chan, C.-H., Qiu, Q., Weiss, R., 2018. A modest 0.5-m rise in sea
 level will double the tsunami hazard in Macau. Science Advances 4, eaat1180.
 https://doi.org/10.1126/sciadv.aat1180
- Liu, E.M., Huang, J., 2013. Risk preferences and pesticide use by cotton farmers in China. Journal of
 Development Economics 103, 202–215. https://doi.org/10.1016/j.jdeveco.2012.12.005
- Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, Md., Wetter, E., Iqbal, A., Qureshi, T., Tatem,
 A., Canright, G., Engø-Monsen, K., Bengtsson, L., 2016. Unveiling hidden migration and
 mobility patterns in climate stressed regions: A longitudinal study of six million anonymous
 mobile phone users in Bangladesh. Global Environmental Change 38, 1–7.
 https://doi.org/10.1016/j.gloenvcha.2016.02.002
- Manchin, M., Orazbayev, S., 2018. Social networks and the intention to migrate. World Development
 109, 360–374. https://doi.org/10.1016/j.worlddev.2018.05.011
- Meier, S., Sprenger, C.D., 2015. Temporal stability of time preferences. Review of Economics and
 Statistics 97, 273–286.
- Migali, S., Scipioni, M., 2019. Who's About to Leave? A Global Survey of Aspirations and Intentions
 to Migrate. International Migration 57, 181–200. https://doi.org/10.1111/imig.12617
- Mishra, S., Mazumdar, S., Suar, D., 2010. Place attachment and flood preparedness. Journal of
 Environmental Psychology 30, 187–197. https://doi.org/10.1016/j.jenvp.2009.11.005
- Mueller, V., Gray, C., Kosec, K., 2014. Heat stress increases long-term human migration in rural
 Pakistan. Nature Climate Change 4, 182–185. https://doi.org/10.1038/nclimate2103
- Nawrotzki, R.J., DeWaard, J., 2018. Putting trapped populations into place: climate change and inter district migration flows in Zambia. Reg Environ Change 18, 533–546.
 https://doi.org/10.1007/s10113-017-1224-3
- Neumann, B., Vafeidis, A.T., Zimmermann, J., Nicholls, R.J., 2015. Future Coastal Population
 Growth and Exposure to Sea-Level Rise and Coastal Flooding A Global Assessment. PLOS
 ONE 10, e0118571. https://doi.org/10.1371/journal.pone.0118571
- Nguyen, H.K., Chiong, R., Chica, M., Middleton, R.H., 2021. Understanding the dynamics of inter provincial migration in the Mekong Delta, Vietnam: an agent-based modeling study.
 SIMULATION 97, 267–285. https://doi.org/10.1177/0037549720975128
- Nicholls, R.J., Adger, W.N., Hutton, C.W., Hanson, S.E. (Eds.), 2020. Deltas in the Anthropocene.
 Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-23517-8
- Nicholls, R.J., Cazenave, A., 2010. Sea-Level Rise and Its Impact on Coastal Zones. Science 328,
 1517–1520. https://doi.org/10.1126/science.1185782
- Norgaard, R.B., 1994. Development Betrayed: The End of Progress and a Coevolutionary
 Revisioning of the Future. Routledge.
- Page, L., Savage, D.A., Torgler, B., 2014. Variation in risk seeking behaviour following large losses:
 A natural experiment. European Economic Review 71, 121–131.
 https://doi.org/10.1016/j.euroecorev.2014.04.009
- Parsons, L., Nielsen, J.Ø., 2021. The Subjective Climate Migrant: Climate Perceptions, Their
 Determinants, and Relationship to Migration in Cambodia. Annals of the American
 Association of Geographers 111, 971–988. https://doi.org/10.1080/24694452.2020.1807899
- Rao, L.-L., Han, R., Ren, X.-P., Bai, X.-W., Zheng, R., Liu, H., Wang, Z.-J., Li, J.-Z., Zhang, K., Li,
 S., 2011. Disadvantage and prosocial behavior: the effects of the Wenchuan earthquake.
 Evolution and Human Behavior 32, 63–69.
 https://doi.org/10.1016/j.evolhumbehav.2010.07.002

- Rigaud, K.K., Sherbinin, A. de, Jones, B.R., Bergmann, J.S., Clement, V.W.C., Ober, K.J., Schewe,
 J., Adamo, S., McCusker, B., Heuser, S., Midgley, A., 2018. Groundswell: Preparing for
 internal climate migration (No. 124719). The World Bank.
- Ross, P.H., 2019. Occupation aspirations, education investment, and cognitive outcomes: Evidence
 from Indian adolescents. World Development 123, 104613.
 https://doi.org/10.1016/j.worlddev.2019.104613
- Ruiz, C., Hernández, B., 2014. Emotions and coping strategies during an episode of volcanic activity
 and their relations to place attachment. Journal of Environmental Psychology 38, 279–287.
 https://doi.org/10.1016/j.jenvp.2014.03.008
- Ruyssen, I., Salomone, S., 2018. Female migration: A way out of discrimination? Journal of
 Development Economics 130, 224–241. https://doi.org/10.1016/j.jdeveco.2017.10.010
- Schewel, K., 2020. Understanding Immobility: Moving Beyond the Mobility Bias in Migration
 Studies. International Migration Review 54, 328–355.
 https://doi.org/10.1177/0197918319831952
- Slangen, A.B.A., Carson, M., Katsman, C.A., van de Wal, R.S.W., Köhl, A., Vermeersen, L.L.A.,
 Stammer, D., 2014. Projecting twenty-first century regional sea-level changes. Climatic
 Change 124, 317–332. https://doi.org/10.1007/s10584-014-1080-9
- Smajgl, A., Toan, T.Q., Nhan, D.K., Ward, J., Trung, N.H., Tri, L.Q., Tri, V.P.D., Vu, P.T., 2015.
 Responding to rising sea levels in the Mekong Delta. Nature Climate Change 5, 167–174.
 https://doi.org/10.1038/nclimate2469
- Stigler, G.J., Becker, G.S., 1977. De Gustibus Non Est Disputandum. The American Economic
 Review 67, 76–90.
- Storlazzi, C.D., Gingerich, S.B., Dongeren, A. van, Cheriton, O.M., Swarzenski, P.W., Quataert, E.,
 Voss, C.I., Field, D.W., Annamalai, H., Piniak, G.A., McCall, R., 2018. Most atolls will be
 uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven
 flooding. Science Advances 4, eaap9741. https://doi.org/10.1126/sciadv.aap9741
- Tanner, K., 2012. Place attachment and place-based security: the experiences of red and green zone
 residents in post-earthquake Kaiapoi (Research Dissertation). The University of Canterbury,
 Christchurch, New Zealand.
- Tjaden, J., Auer, D., Laczko, F., 2019. Linking Migration Intentions with Flows: Evidence and
 Potential Use. International Migration 57, 36–57. https://doi.org/10.1111/imig.12502
- Twigger-ross, C.L., Uzzell, D.L., 1996. PLACE AND IDENTITY PROCESSES. Journal of
 Environmental Psychology 16, 205–220. https://doi.org/10.1006/jevp.1996.0017
- Van der Linden, S., 2015. The social-psychological determinants of climate change risk perceptions:
 Towards a comprehensive model. Journal of Environmental Psychology 41, 112–124.
 https://doi.org/10.1016/j.jenvp.2014.11.012
- Veszteg, R.F., Funaki, Y., Tanaka, A., 2015. The impact of the Tohoku earthquake and tsunami on
 social capital in Japan: Trust before and after the disaster. International Political Science
 Review 36, 119–138. https://doi.org/10.1177/0192512113509501
- Vitousek, S., Barnard, P.L., Fletcher, C.H., Frazer, N., Erikson, L., Storlazzi, C.D., 2017. Doubling
 of coastal flooding frequency within decades due to sea-level rise. Scientific Reports 7, 1399.
 https://doi.org/10.1038/s41598-017-01362-7
- Wachinger, G., Renn, O., Begg, C., Kuhlicke, C., 2013. The Risk Perception Paradox—Implications
 for Governance and Communication of Natural Hazards. Risk Analysis 33, 1049–1065.
 https://doi.org/10.1111/j.1539-6924.2012.01942.x
- West, E.G., McKee, M., 1983. De Gustibus Est Disputandum: The Phenomenon of "Merit Wants"
 Revisited. The American Economic Review 73, 1110–1121.
- Whitt, S., Wilson, R.K., 2007. Public Goods in the Field: Katrina Evacuees in Houston. Southern
 Economic Journal 74, 377–387. https://doi.org/10.2307/20111973
- Williams, A.M., Baláž, V., 2012. Migration, Risk, and Uncertainty: Theoretical Perspectives.
 Population, Space and Place 18, 167–180. https://doi.org/10.1002/psp.663
- Williams, D.R., Vaske, J.J., 2003. The Measurement of Place Attachment: Validity and
 Generalizability of a Psychometric Approach. Forest Science 49, 830–840.
- 1001 Willox, C., Harper, S.L., Ford, J.D., Landman, K., Houle, K., Edge, V.L., Rigolet Inuit Community 1002 Government, 2012. "From this place and of this place:" climate change, sense of place, and 1003 health in Nunatsiavut, Canada. Soc Sci Med 75, 538-547. 1004 https://doi.org/10.1016/j.socscimed.2012.03.043

- 1005World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research1006Involving Human Subjects, 2013.JAMA 310, 2191–2194.1007https://doi.org/10.1001/jama.2013.281053
- Zander, K.K., Richerzhagen, C., Garnett, S.T., 2019. Human mobility intentions in response to heat
 in urban South East Asia. Global Environmental Change 56, 18–28.
 https://doi.org/10.1016/j.gloenvcha.2019.03.004
- Zscheischler, J., Westra, S., van den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, A.,
 AghaKouchak, A., Bresch, D.N., Leonard, M., Wahl, T., Zhang, X., 2018. Future climate risk
 from compound events. Nature Climate Change 8, 469–477. https://doi.org/10.1038/s41558018-0156-3
- 1015
- 1016 **Ethics statement:** The study design and field implementation were designed and conducted according
- 1017 to the ethical standards in the declaration of Helsinki ("World Medical Association Declaration of 1018 Helsinki," 2013). All respondents gave their informed consent in written form and were free to resign 1010 from the study at any time
- 1019 from the study at any time.

- Supplementary Information for: Why do people persist in sea-level rise 2 threatened coastal regions? Empirical evidence on risk aversion and place 3 attachment 4
- 5 The supplementary materials are organized as follows: Section S1 provides summary statistics, 6 balancing across groups and information on affectedness across groups. Section S2 shows how 7 respondents perceive past and future climate change impacts and their recommendation on how best to adapt to rising sea-levels. Section S3 provides the complete regression tables behind the graphical 8 visualizations, model extensions, and robustness checks. In section S4, the reader can find additional 9 information on migration aspirations and a descriptive analysis of the financial feasibility to act on 10
- 11 these aspirations.

12 **Table of Contents: Supplementary Information**

13	S 1	Summary statistics, affectedness, balancing across groups	2
14	S2	Impact- and risk appraisal of SLR hazards and adaptation strategies	4
15	S3	Additional analysis and robustness checks	6
16	S3.1	Migration likelihood in the next three years	6
17	S3.2	Robustness checks of main results	8
18	S3.3	Heterogeneous treatment effects	19
19	S4	International migration aspirations, likelihood and reasons	24

20

21 **Supplementary Figures:**

- 22 Figure S1. Perceived climate impacts and recommended adaptation actions
- Figure S2. Predicted migration likelihood in the next three years 23
- 24 Figure S3. Predicted relationship between climate hazards and distance to urban center
- 25 Figure S4. International migration aspirations
- Migration likelihood and financial feasibility 26 Figure S5.

27 **Supplementary Tables:**

- 28 Table S1. Summary statistics
- 29 Table S2. Affectedness across self-reported hazards
- Table S3. Balancing across self-reported hazards 30
- 31 Table S4. Determinants of number of self-reported hazards
- Full regression output for preferences (Figure 3, panel a) 32 Table S5.
- Multinomial logit with no aspiration as the reference group (Figure 3, panel b) 33 Table S6.
- Additional regressions: Risk preferences 34 Table S7.
- Additional regressions: Place identity (z-score) 35 Table S8.
- Additional regressions: Place dependence (z-score) 36 Table S9.
- 37 Table S10. SURE models place attachment
- Tobit models: Accounting for censoring of measures 38 Table S11.
- 39 Accounting for count structure of measures Table S12.
- 40 Table S13. Binary specification of self-reported hazards variable (yes / no) 41
 - Table S14. Preferences robustness check with aggregate measure of hazards
- 42 Table S15. Excluding all migrants in our sample

43	Table S16.	Determinants of migration aspirations across groups
44	Table S17.	Heterogeneous effects for migration aspirations depending on preferences
45	Table S18.	Heterogeneous effects for migration aspirations depending on distance to urban centers
46	Table S19.	Reasons and steps for international migration by destination region
47		

48

S1 Summary statistics, descriptive results, affectedness, and balancing across 49

- 50 groups
- Supplementary Table S1 gives an overview of the different outcome variables and non-standardized 51

52 independent variables used in the analysis presented in the main manuscript. Table S2 shows the self-

53 reported damages by hazards and perceived risks of SLR across the three groups, while Table S3 shows

54 the balancing of socioeconomic variables between the groups.

_	_
- 5	5
- ٦	<u> </u>
~	2

Table S1. Summar	y stati	stics			
Panel A: Outcomes	Ν	Mean	SD	Min	Max
Preferences					
Stair-case Risk: Bangladesh	247	24.18	12.67	1	32
Investment Task: Vietnam	377	10,068.97	7,635.34	0	20000
Place identity $(6, 30)$	624	26.46	3.99	8	30
Place dependence (6, 30)	624	22.56	4.46	7	30
Migration Aspirations					
No aspiration (=1)	623	0.38	0.49	0	1
Low-income destination (=1)	623	0.04	0.20	0	1
Medium-income destination $(=1)$	623	0.16	0.36	0	1
High-income destination (=1)	623	0.42	0.49	0	1
Migration likelihood (very unlikely)	385	0.71	0.45	0	1
Migration likelihood (neither unlikely nor likely)	385	0.22	0.42	0	1
Migration likelihood (very likely)	385	0.06	0.25	0	1
Panel B: Explanatory variables					
Affectedness					
Number of droughts, floods & storms in the last 5 years	624	2.73	3.44	0	40
Damages & perceived threat					
Number of times rebuild house	624	0.88	2.28	0	15
Rebuild days	624	11.39	43.66	0	730
Rebuild costs (PPP adjusted)	617	1,464.70	4,623.37	0	43085
Relocation due to floods or land erosion in the past 10 years (=1)	624	0.38	0.48	0	1
Having lost land (=1)	624	0.22	0.41	0	1
Perceived threat of SLR for livelihoods	624	7.37	3.01	0	10
Perceived threat of SLR for relocation	624	3.67	3.50	0	10
Perceived intensity of future SLR impacts	624	3.84	1.05	1	5
Socio-economics					
Female(=1)	624	0.55	0.50	0	1
Age	624	40.79	14.25	18	92
Education (years)	624	6.83	4.43	0	18
Household size	624	4.42	1.64	1	12
Married(=1)	624	0.79	0.41	0	1
Value assets (PPP adjusted)	613	39,159.81	96,312.16	0	1470736
Monthly household income (PPP adjusted)	622	1,224.85	2,945.04	0	53856

Table C1 Cummany statist

56 Notes: All cost, income and asset value data has been PPP adjusted using conversion factors from the time of data 57 collection.

	None	1 or 2	3 or more		
	(1)	(2)	(3)	T-test diff	erences
Variable	Mean/SD	Mean/SD	Mean/SD	(1)-(2)	(1)-(3)
House: Rebuild frequency due to disasters	0.61	1.00	0.90	-0.40*	-0.29
	[1.62]	[2.49]	[2.31]		
House: Rebuild days after disaster	8.03	12.80	12.53	-4.77	-4.50
	[32.89]	[33.88]	[56.15]		
House: Rebuild costs after disaster	786.20	2250.52	1267.54	-1464.33***	-481.34
	[2752.03]	[6297.64]	[3827.87]		
Relocate due to disaster (=1)	0.27	0.50	0.57	-0.23***	-0.31***
	[0.44]	[0.50]	[0.50]		
Lost land to erosion (=1)	0.23	0.19	0.24	0.03	-0.01
	[0.42]	[0.40]	[0.43]		
Perceived threat to livelihoods due to disasters	6.51	6.95	8.33	-0.44	-1.83***
	[3.42]	[2.90]	[2.49]		
Perceived relocation risk due to disasters	2.71	3.55	4.47	-0.84**	-1.76***
	[3.19]	[3.50]	[3.53]		
Future perception of SLR impacts	3.72	3.73	4.02	-0.01	-0.30***
	[1.04]	[1.07]	[1.03]		
Observations	171	211	242		
F-test of joint significance (F-stat)				4.70***	11.74***
F-test, number of observations				377	410
es: *** p<0.01, ** p<0.05, * p<0.1					

61 Notes: *** p<0.0

Table S3.	Balancing across	self-reported	hazards
1 abic 55.	Dalancing across	sen-reported	nazarus

	None	1 or 2	3 or more		
	(1)	(2)	(3)	T-test o	lifferences
Variable	Mean/SD	Mean/SD	Mean/SD	(1)-(2)	(1)-(3)
Female	0.50	0.57	0.57	-0.07	-0.06
	[0.50]	[0.50]	[0.50]		
Age(years)	40.49	40.32	41.41	0.17	-0.92
	[14.00]	[14.71]	[14.05]		
Education (years)	6.91	6.35	7.21	0.57	-0.29
	[4.56]	[4.37]	[4.37]		
Household size	4.50	4.61	4.19	-0.11	0.31*
	[1.75]	[1.52]	[1.65]		
Married	0.83	0.76	0.79	0.07*	0.05
	[0.38]	[0.43]	[0.41]		
Monthly HH income(PPP)	931.95	1267.36	1394.24	-335.41	-462.29**
	[1100.61]	[4217.79]	[2435.56]		
Value assets (PPP)	38572.65	39406.14	39353.68	-833.49	-781.03
	[68212.22]	[125875.66]	[83190.64]		
Observations	171	206	242		
F-test (F-stat)				1.17	2.33**
F-test (obs)				371	405

64 Notes: *** p<0.01, ** p<0.05, * p<0.1

VARIABLES	Number of reported hazards (1)
Female	0.18
	(0.30)
Age(years)	0.01
	(0.01)
Education (years)	-0.01
	(0, 03)
Household size	-0.24
	(0.36)
Married	-0.04
Married	(0.08)
Monthly UU income (DDD)	(0.08)
Monumy HH meome (FFF)	(0.12)
	(0.12)
value assets (PPP)	0.02
	(0.07)
Constant	-0.54
	(1.02)
Observations	611
Adjusted R-squared	0.01

Table S4.Determinants of number of self-reported hazards

68

67

66

69 S2 Impact- and risk appraisal of SLR hazards and adaptation strategies

70 We find evidence that respondents are indeed highly aware of sea-level rise impacts (higher, 71 salinization and erosion) and that these will become worse in the future (paired T-test n=624, diff. 72 (past-future)=-0.21, p=0.00) (Figure S1, panel a). Respondents in Bangladesh perceive SLR impacts 73 as less likely to happen compared to respondents in Vietnam (Mann-Whitney U-Test, z=-11.17, 74 p=0.00). On average, respondents in Bangladesh and Vietnam perceive that floods and erosion will be 75 a severe threat to their livelihoods (Mean_{Bangladesh}=7.01±2.80, Mean_{Vietnam}=7.60±3.12). 11% (n=70) of 76 respondents already believe it is "absolutely certain" that they will have to move permanently to a different place because of these impacts. 77

78 We derive adaptation responses from a hypothetical scenario of a two-foot (61 cm) rise in sea-level 79 within the next five years (Figure S1, panel b). We explicitly asked respondents what they would 80 recommend to others not what they would do themselves. This allows us to avoid biases related to 81 self-reported behavioral intentions and enables respondents to express their preferences for different 82 adaptation measures without being affected by their personal (lack of) capacities. In line with other 83 studies, we find that most people would recommend in-situ adaptation to SLR despite respondents being aware of the potential impacts and risks. Mobility is predominantly seen as a last resort if all 84 85 other adaptation measures fail. Overall, there seems to be a strong preference for known collective in86 situ adaptation measures, the majority with 66% (n=411) recommends these measures, ranging 87 between 50% in Bangladesh and 76% in Vietnam. The most preferred in-situ adaptation measures are 88 by far sea-walls, named by 69% of respondents, followed by planting mangroves (50%), moving 89 within the community boundaries (32%) and beach nourishment measures that try to counteract 90 erosion (24%). The second most mentioned strategy with 24% of respondents is a combination of both 91 in-situ adaptation as long as possible before moving away. Given that SLR impacts accumulate slowly 92 over the years, these measures might be perceived as sufficient for now, leading people to overestimate 93 their efficacy in dealing with them. Only 4% of respondents see migration as the only option to adapt 94 and 6% of respondents would not know what to do at all.

95

Figure S1. Perceived climate impacts and recommended adaptation actionsa Past and future perception of SLR impacts

96 97

Notes: The white diamond indicates the median; the blue box shows the interquartile range (middle 50% of values) and 98 the light blue area shows the rotated and smoothed density plot. Panel **a** shows the distribution of the past and future SLR 99 impact appraisal index (1 to 5). Higher values imply stronger agreement that sea levels are or will be higher, saltwater 100 intrusion and coastal erosion already happened or will happen. Panel b shows the results from an open-ended question 101 where respondents could give multiple answers based on which respondents were classified into four distinct categories: 102 (i) people who didn't mention any measures, (ii) only in-situ adaptation measures; (iii) only out-migration and (iv) a 103 combination of in-situ adaptation and out-migration. We asked respondents what they would recommend to people living 104 in low-lying coastal areas or atolls to do to prepare themselves. "Suppose sea levels will increase by 1/2 meter within the 105 next five years. This would mean that waves become much stronger, more land will be lost to the sea, and saltwater will 106 come further into the land on high tides."

107 S3 Additional analysis and robustness checks

108 S3.1 Migration likelihood in the next three years

109 We study migration in a sample where people are (i) highly affected by hazards related to rising sealevels and (ii) many desire to move internationally but have low ability to act on these aspirations 110 potentially worsened by climate hazards. Overall, 71% of respondents with an aspiration assessed it 111 112 as "very unlikely" (n=274), while only 6% are optimistic (n=25) to move abroad. The other 22% (n=86) perceive their chances as neither "very likely" nor "very unlikely". Indeed, when predicting 113 114 the migration likelihood, we find that number of reported climate hazards are associated with a lower 115 likelihood to act on aspirations to move abroad within the next three years (see Fehler! Verweisquelle konnte nicht gefunden werden.). In the Supplementary Section S4 we already further investigated 116 117 respondent's financial ability to act on their aspirations. This descriptive analysis revealed that only three respondents who assessed their likelihood as "very likely" could move to their desired destination 118 (South Africa, Australia, Thailand) given their financial ability. 119

Thus, while climate hazards are associated with aspiring to move abroad, they are negatively correlated with the likelihood to act on these aspirations. This could be in line with our proposed conceptual model where people are more likely to form aspirations beyond their capacities (high-income destinations) with increasing hazards neglecting less attractive alternatives, which may ultimately result in more people staying in hazardous environments.

Very unlikely 1 or 2 0.16 0.14 3 or more Neither likely nor unlikely 1 or 2 -0.11 -0,09 3 or more Very-likely 1 or 2 3 or more .2 -.2 0 .4 .6 Effect size in pp relative to no hazards

Figure S2. Predicted migration likelihood in the next three years

Effect size in pp relative to no hazards Notes: Predicted estimates from an ordered logistic regression of reported hazards on the likelihood to act on their migration aspirations within the next three years. In all models we include village fixed effects and control for socio-

129 inigration aspirations within the next three years. In an models we include vinage fixed effects a 129 economics and damages. Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

131 S3.2 Robustness checks of main results

- 132 In the following we provide the full regression outputs underlying the results presented in the figures
- 133 showing estimates for all control variables (Table S5 & Table S6). In addition, we provide several
- 134 robustness checks that raise our confidence regarding the findings shown in the main manuscript:
- Country specific analysis yield similar results, even when controlling for interviewer fixed effects (Table S7 to Table S9)
- Binary specification of risk aversion due to clustering at the extremes yields similar results in
 Bangladesh (Table S12)
- Results for place attachment are robust when accounting for the correlation between both place
 attachment dimensions using SURE models (Table S12)
- Results on risk attitudes and place attachment are robust when using tobit models to account for censoring of the data (Table S11) and the count structure of the data (Table S12)
- Results are also robust when using a binary explanatory variable of reported hazards Table S13
 or aggregate measure (Table S14) and when excluding respondents who moved recently to the
 village where we interviewed them, as these might have had less time to experience hazards at
 this place (Table S15).

Risk (z-score) Identity (z-score) Dependance (zscore) VARIABLES (1)(2) (3) (4) (5)(6) 0.22** 0.30*** 0.26** Hazards: 1 or 2 0.20* 0.19* 0.14 (0.11)(0.11)(0.11)(0.10)(0.11)(0.10)0.17* 0.31*** 0.29*** 0.23** Hazards: 3 or more 0.06 0.05 (0.10)(0.10)(0.11)(0.11)(0.10)(0.11)Socio-economics Female (=1)0.12 -0.12 -0.04(0.08)(0.09)(0.09)Age (years) 0.01** 0.01 0.01*** (0.00)(0.00)(0.00)Married (=1) 0.25** -0.09 -0.10 (0.10)(0.11)(0.12)Education -0.00 0.01 -0.01 (0.01)(0.01)(0.01)Household size -0.07 0.05 -0.03 (0.05)(0.05)(0.05)HH monthly income (log+1)0.01 -0.01 -0.02 (0.03)(0.03)(0.03)HH asset value (log+1) 0.05* -0.010.03 (0.03)(0.03)(0.02)Damages by hazards Land lost erosion (=1)-0.07 0.04 -0.15(0.11)(0.10)(0.12)House rebuild index (PCA) -0.06** 0.01 0.00(0.03)(0.03)(0.03)-0.02 Constant 0.28 0.44 -0.15-0.58 -0.31 (0.18)(0.38)(0.13)(0.44)(0.16)(0.42)Village FE Y Υ Υ Y Y Y Observations 624 605 624 605 624 605 Adjusted / Pseudo R-squared 0.09 0.10 0.02 0.01 0.02 0.06 F-test: Socio-economics 0.09 0.22 0.00 F-test: Damages 0.05 0.85 0.43

Table S5.Full regression output for preferences (Figure 3, panel a)

148 Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

149

VARIABLES	(1) No_aspiration	(2) Low income	(3) Medium income	(4) High income
	(refrerence group)			
Hazards: 1 or 2		1.26**	0.92**	0.37
		(0.60)	(0.43)	(0.29)
Hazards: 3 or more		0.71	1.68***	0.98***
		(0.67)	(0.46)	(0.29)
Socio-economics			()	
Female (=1)		1.10*	0.30	0.27
		(0.64)	(0.37)	(0.22)
Age (years)		-0.01	-0.02	-0.02*
		(0.02)	(0.02)	(0.01)
Married (=1)		-0.68	-0.64	0.11
		(0.78)	(0.48)	(0.27)
Education		0.01	-0.05	0.08**
		(0.07)	(0.05)	(0.03)
Household size		-0.11	-0.25**	-0.05
		(0.14)	(0.12)	(0.09)
HH monthly income (log+1)		0.61**	0.51***	0.50***
		(0.28)	(0.18)	(0.17)
HH asset value (log+1)		0.25	-0.09	0.11
		(0.19)	(0.12)	(0.09)
Damages by hazards				
Land lost erosion (=1)		-0.08	0.43	-0.23
		(0.66)	(0.44)	(0.31)
House rebuild index (PCA)		-0.16	-0.10	0.03
		(0.17)	(0.12)	(0.08)
Constant		-5.14**	1.11	-2.38*
		(2.33)	(1.57)	(1.36)
Village FE		Y	Y	Y
Observations	605	605	605	605
Pseudo-squared	0.33	0.33	0.33	0.33

Table S6. Multinomial logit with no aspiration as the reference group (Figure 3, panel b)

1 Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

Table S7.Additional regressions: Risk preferences

	Pooled		Bangladesh	Vietnam		
	F	Risk (z-sco	ore)	Staircase (1,	Amount (in VND) invested in the risky lottery	
			-	32)	(0, 20000)	
VARIABLES	(1)	(2)	(3)	(4)	(5)	
Hazards: 1 or 2	0.14	0.21**	0.27**	3.94*	-2.155.62	
	(0.11)	(0.11)	(0.12)	(2.19)	(1.361.03)	
Hazards: 3 or more	0.17*	0.24**	0.45***	4.45**	-4,491.38***	
	(0.10)	(0.10)	(0.12)	(2.26)	(1,403.17)	
Socio-economics						
Female (=1)		0.14	0.10	0.10	-1,350.23	
		(0.09)	(0.09)	(2.11)	(852.59)	
Age (31-40)		0.17	0.21*	0.95	-2,933.32**	
		(0.12)	(0.11)	(2.15)	(1,324.71)	
Age (41-50)		0.14	0.15	1.45	-2,115.27	
		(0.13)	(0.13)	(2.65)	(1,473.77)	
Age (51-60)		0.46***	0.47***	3.39	-4.944.02***	
2 ()		(0.15)	(0.15)	(3.63)	(1,548.15)	
Age (>60)		0.27*	0.22	-1.72	-2,905.73*	
6		(0.16)	(0.16)	(6.38)	(1,599,38)	
Married (=1)		-0.11	-0.16	-1.40	1,155.00	
()		(0.10)	(0.11)	(2.46)	(1.062.52)	
Education		-0.00	-0.01	-0.07	15.37	
		(0.01)	(0.01)	(0.22)	(122.39)	
Household size		-0.02	-0.01	-0.83	-468.38	
		(0.03)	(0.03)	(0.51)	(294.55)	
HH monthly income (log+1)		-0.07	-0.02	0.44	650.07	
		(0.05)	(0.05)	(0.83)	(698.62)	
HH asset value (log+1)		0.01	0.02	0.15	-195 73	
		(0.03)	(0.02)	(0.54)	(265.47)	
Damages extremes		· /	· /	~ /		
Land lost erosion $(=1)$		-0.07	-0.06	-2.63	-1.060.43	
		(0.11)	(0.11)	(1.90)	(1,250.94)	
House rebuild index (PCA)		-0.06**	-0.06**	-1.09*	395.95	
		(0.03)	(0.03)	(0.61)	(341.25)	
Constant	0.28	0.62*	-0.16	21.00***	14,905.82***	
	(0.18)	(0.36)	(0.42)	(7.93)	(4,760.43)	
Village FE	V	v	v	V	V	
Interviewer FE	N	N	Y	Ŷ	V V	
Observations	624	605	604	247	357	
Adjusted R-squared	0.09	0.10	0.14	0.05	0.08	

154 Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

155

153

	introniar i	-5 ¹ -551011	5. 1 1400 10	ienency (2 see	
		Pooled		Bangladesh	Vietnam
VARIABLES	(1)	(2)	(3)	(4)	(5)
Hazards: 1 or 2	0.22**	0.20*	0.12	0.00	0.45**
	(0.11)	(0.11)	(0.12)	(0.13)	(0.17)
Hazards: 3 or more	0.31***	0.29***	0.19	-0.04	0.60***
	(0.11)	(0.11)	(0.12)	(0.14)	(0.17)
Socio-economics	· /	× /			× ,
Female (=1)		-0.13	-0.08	-0.31***	0.00
		(0.09)	(0.08)	(0.12)	(0.12)
Age (31-40)		0.00	-0.02	-0.13	0.11
		(0.12)	(0.11)	(0.15)	(0.19)
Age (41-50)		0.25**	0.14	0.05	0.41**
5 ()		(0.12)	(0.12)	(0.15)	(0.20)
Age (51-60)		0.05	0.04	-0.04	0.15
5		(0.15)	(0.15)	(0.17)	(0.22)
Age (>60)		0.22	0.18	0.09	0.35
3 ()		(0.16)	(0.15)	(0.24)	(0.22)
Married (=1)		-0.09	0.04	0.12	-0.18
		(0.12)	(0.12)	(0.16)	(0.16)
Education		0.01	-0.01	0.01	0.00
		(0.01)	(0.01)	(0.01)	(0.02)
Household size		0.04	0.04	0.00	0.09**
		(0.02)	(0.02)	(0.03)	(0.04)
HH monthly income (log+1)		0.05	0.10*	0.01	0.10
		(0.05)	(0.05)	(0.06)	(0.09)
HH asset value (log+1)		-0.01	0.02	-0.00	-0.03
		(0.03)	(0.03)	(0.04)	(0.06)
Damages extremes					
Land lost erosion (=1)		0.05	-0.03	0.06	-0.01
		(0.10)	(0.09)	(0.12)	(0.16)
House rebuild index (PCA)		0.00	-0.02	-0.00	0.02
		(0.03)	(0.03)	(0.03)	(0.04)
Constant	-0.15	-0.45	-1.38***	0.09	-1.17
	(0.13)	(0.42)	(0.47)	(0.48)	(0.72)
Village FE	Y	Y	Y	Y	Y
Interviewer FE	Ν	Ν	Y	Ν	Ν
Observations	624	605	604	247	358
Adjusted R-squared	0.02	0.02	0.19	-0.02	0.04

Table S8. Additional regressions: Place identity (z-score)

157 Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

	8		1	(,
		Pooled		Bangladesh	Vietnam
VARIABLES	(1)	(2)	(3)	(4)	(5)
Hazards: 1 or 2	0.30***	0.27**	0.15	0.21	0.42***
	(0.10)	(0.10)	(0.11)	(0.14)	(0.16)
Hazards: 3 or more	0.05	0.06	0.07	0.05	0.18
	(0.10)	(0.11)	(0.12)	(0.15)	(0.15)
Socio-economics					
Female (=1)		-0.04	-0.05	-0.05	-0.03
		(0.09)	(0.09)	(0.13)	(0.11)
Age (31-40)		0.05	0.04	-0.13	0.32*
		(0.12)	(0.11)	(0.15)	(0.19)
Age (41-50)		0.22	0.17	-0.03	0.52**
		(0.14)	(0.14)	(0.17)	(0.23)
Age (51-60)		0.26*	0.22	0.19	0.45**
,		(0.15)	(0.15)	(0.23)	(0.22)
Age (>60)		0.46***	0.37**	0.75***	0.65***
		(0.17)	(0.17)	(0.26)	(0.23)
Married (=1)		0.29**	0.34***	0.13	0.33**
		(0.12)	(0.12)	(0.18)	(0.16)
Education		-0.01	-0.02**	-0.00	-0.02
		(0.01)	(0.01)	(0.02)	(0.02)
Household size		0.05**	0.04	-0.01	0.13***
		(0.03)	(0.03)	(0.03)	(0.04)
HH monthly income (log+1)		-0.03	0.03	-0.09	-0.01
		(0.05)	(0.06)	(0.07)	(0.08)
HH asset value (log+1)		-0.01	0.00	-0.02	-0.02
		(0.03)	(0.03)	(0.03)	(0.04)
Damages extremes					
Land lost erosion (=1)		-0.14	-0.12	0.04	-0.31*
		(0.12)	(0.11)	(0.15)	(0.18)
House rebuild index (PCA)		0.00	-0.02	-0.00	0.02
		(0.03)	(0.03)	(0.04)	(0.03)
Constant	-0.02	-0.10	-0.82*	0.72	-0.82
	(0.16)	(0.39)	(0.48)	(0.51)	(0.61)
Village FE	Y	Y	Y	Y	Y
Interviewer FE	Ν	Ν	Y	Ν	Ν
Observations	624	605	604	247	358
Adjusted R-squared	0.02	0.06	0.12	-0.02	0.11

Table S9.	Additional regressions:	Place dependence (z-score)
	-	_ , ,

160 Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

	Identity	Dependence
VARIABLES	(1)	(2)
Hazards: 1 or 2	0.20*	0.27***
	(0.10)	(0.10)
Hazards: 3 or more	0.29***	0.06
	(0.10)	(0.10)
Socio-economics		
Female (=1)	-0.13	-0.04
	(0.09)	(0.08)
Age (31-40)	0.00	0.05
	(0.12)	(0.11)
Age (41-50)	0.25*	0.22*
	(0.13)	(0.13)
Age (51-60)	0.05	0.26*
	(0.15)	(0.15)
Age (>60)	0.22	0.46***
	(0.16)	(0.16)
Married (=1)	-0.09	0.29***
	(0.11)	(0.11)
Education	0.01	-0.01
	(0.01)	(0.01)
Household size	0.04	0.05**
	(0.03)	(0.03)
HH monthly income (log+1)	0.05	-0.03
	(0.05)	(0.05)
HH asset value (log+1)	-0.01	-0.01
	(0.03)	(0.03)
Damages extremes		()
Land lost erosion (=1)	0.05	-0.14
× /	(0.11)	(0.11)
House rebuild index (PCA)	0.00	0.00
()	(0.03)	(0.03)
Constant	-0.45	-0.10
	(0.38)	(0.37)
	()	()
Observations	605	605
Adjusted R-squared	0.06	0.11

Table S10.SURE models place attachment

163 Notes: Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

	Risk	Identity	Dependence
VARIABLES	(1)	(2)	(3)
	0.01**	0.02	0.05**
Hazards: 1 or 2	0.31**	0.03	0.05**
	(0.15)	(0.03)	(0.02)
Hazards: 3 or more	0.54***	0.07**	0.01
~	(0.16)	(0.03)	(0.02)
Socio-economics			
Female (=1)	0.07	-0.02	-0.01
	(0.10)	(0.02)	(0.02)
Age (31-40)	0.27*	-0.00	0.01
	(0.14)	(0.03)	(0.02)
Age (41-50)	0.18	0.07**	0.04
	(0.16)	(0.03)	(0.03)
Age (51-60)	0.53***	0.01	0.05*
	(0.18)	(0.04)	(0.03)
Age (>60)	0.25	0.04	0.09***
	(0.19)	(0.04)	(0.03)
Married (=1)	-0.14	-0.03	0.06**
	(0.12)	(0.03)	(0.02)
Education	-0.01	0.00	-0.00
	(0.01)	(0.00)	(0.00)
Household size	-0.01	0.01	0.01*
	(0.03)	(0.01)	(0.01)
HH monthly income (log+1)	-0.01	0.01	-0.01
	(0.07)	(0.01)	(0.01)
HH asset value (log+1)	0.02	-0.01	-0.00
	(0.03)	(0.01)	(0.01)
Damages extremes	()		· · ·
Land lost erosion (=1)	-0.06	0.00	-0.02
()	(0.13)	(0.02)	(0.02)
House rebuild index (PCA)	-0.08**	0.00	0.00
· · · · · · · · · · · · · · · · · · ·	(0.04)	(0.01)	(0.01)
Constant	0.52	0.83***	0.66***
	(0.51)	(0.11)	(0.08)
Village FE	Y	Y	Y
Interviewer FE	Y	Ν	Ν
Observations	604	605	605
Decudo D courred	0.12	0.11	-0.43

Table S11. Tobit models: Accounting for censoring of measures

166

167 Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

Table S12. Accounting for count structure of measures

	Bangladesh: Risk staircase			Vietna	m: Amount	Pooled: Poisson	
				invested in	n risky lottery		
	Poisson	Negative-	Probit (AME):	Poisson	Negative-	Place	Place
		binomial	Risk-averse		binomial	identity	dependence
			(=1)				
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Hazards: 1 or 2	0.16*	0.18	0.12*	-0.22*	-0.25	0.04*	0.08**
	(0.09)	(0.11)	(0.07)	(0.13)	(0.17)	(0.02)	(0.03)
Hazards: 3 or more	0.19**	0.19*	0.15**	-0.47***	-0.54***	0.06***	0.02
	(0.09)	(0.12)	(0.07)	(0.14)	(0.19)	(0.02)	(0.03)
Socio-economics							
Female (=1)	0.01	0.04	-0.02	-0.14*	-0.15	-0.03	-0.01
	(0.08)	(0.11)	(0.06)	(0.08)	(0.11)	(0.02)	(0.02)
Age (31-40)	0.04	0.04	0.02	-0.28**	-0.38***	-0.00	0.01
	(0.09)	(0.11)	(0.06)	(0.12)	(0.14)	(0.03)	(0.03)
Age (41-50)	0.06	0.10	0.03	-0.21	-0.31*	0.05**	0.06
	(0.10)	(0.13)	(0.08)	(0.13)	(0.16)	(0.03)	(0.04)
Age (51-60)	0.14	0.12	0.12	-0.52***	-0.64***	0.01	0.08*
	(0.14)	(0.19)	(0.09)	(0.15)	(0.19)	(0.03)	(0.04)
Age (>60)	-0.06	0.02	-0.14	-0.29*	-0.40**	0.05	0.13***
	(0.23)	(0.25)	(0.23)	(0.15)	(0.19)	(0.03)	(0.05)
Married (=1)	-0.06	-0.12	-0.04	0.13	0.15	-0.02	0.09**
	(0.10)	(0.12)	(0.07)	(0.11)	(0.12)	(0.02)	(0.04)
Education	-0.00	-0.00	-0.00	0.00	0.00	0.00	-0.00
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)
Household size	-0.03	-0.04*	-0.03**	-0.05	-0.05	0.01	0.01**
	(0.02)	(0.03)	(0.01)	(0.03)	(0.04)	(0.01)	(0.01)
HH monthly income (log+1)	0.02	0.02	0.02	0.07	0.10	0.01	-0.01
	(0.03)	(0.04)	(0.03)	(0.07)	(0.08)	(0.01)	(0.01)
HH asset value (log+1)	0.00	0.01	0.00	-0.02	-0.03	-0.00	-0.00
	(0.02)	(0.03)	(0.02)	(0.03)	(0.04)	(0.01)	(0.01)
Damages extremes		~ /		× /			~ /
Land lost erosion (=1)	-0.12	-0.14	-0.10*	-0.11	-0.11	0.01	-0.04
	(0.08)	(0.10)	(0.06)	(0.14)	(0.15)	(0.02)	(0.03)
House rebuild index (PCA)	-0.04*	-0.06*	-0.03*	0.05	0.04	0.00	0.00
× ,	(0.02)	(0.03)	(0.02)	(0.04)	(0.04)	(0.01)	(0.01)
Constant	3.05***	3.12***		9.56***	9.48***	-0.28***	-0.42***
	(0.32)	(0.42)		(0.49)	(0.57)	(0.09)	(0.11)
Village FE	Y	Y	Y	Y	Y	Y	Y
Interviewer FE	Y	Y	Y	Y	Y	Ν	Ν
Observations	247	247	247	357	357	605	605
Pseudo R-Squared	0.07	0.01	0.14	0.12	0.00	0.00	0.00

170 Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

Table S13.	Binary specification of self-reported hazards variable (yes / no)						
	Risk (z-	Identity (z-	Dependance (z-	Aspiration to move abroad			
	score)	score)	score)	(=1)			
VARIABLES	(1)	(2)	(3)	(4)			
Climate related hazard (=1)	0.28***	0.23**	0.21**	0.09**			
	(0.10)	(0.11)	(0.10)	(0.04)			
Number of hazards	-0.02	0.00	-0.02	0.01			
	(0.01)	(0.01)	(0.01)	(0.01)			
Socio-economics		()					
Female (=1)	0.12	-0.12	-0.04	0.04			
	(0.08)	(0.09)	(0.09)	(0.03)			
Age (years)	0.01**	0.01	0.01***	-0.00*			
	(0.00)	(0.00)	(0.00)	(0.00)			
Married (=1)	-0.09	-0.10	0.24**	0.01			
	(0.10)	(0.11)	(0.12)	(0.04)			
Education	-0.00	0.01	-0.02	0.01**			
	(0.01)	(0.01)	(0.01)	(0.00)			
Household size	-0.06	0.06	-0.04	0.08***			
	(0.05)	(0.05)	(0.05)	(0.02)			
HH monthly income (log+1)	0.01	-0.01	-0.01	0.01			
	(0.03)	(0.03)	(0.03)	(0.01)			
HH asset value (log+1)	-0.01	0.03	0.05**	-0.02			
	(0.03)	(0.02)	(0.03)	(0.01)			
Damages extremes	× ,						
Land lost erosion (=1)	-0.06	0.05	-0.16	-0.01			
	(0.11)	(0.10)	(0.12)	(0.05)			
House rebuild index (PCA)	-0.06**	0.01	0.01	-0.00			
× ,	(0.03)	(0.03)	(0.03)	(0.01)			
Constant	0.41	-0.60	-0.28	~ /			
	(0.38)	(0.44)	(0.42)				

Pseudo R-Squared Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 173

Y

605

0.10

174

Village FE

Observations

Adjusted R-squared

As a robustness check, we aggregate self-reported data at the community level, which is a well-175 176 established method when the outcome of interest is also at the community level (Sampson et al., 1997). 177 Hunter et al. (2013) showed that aggregated self-reported measures of drought were strongly associated with objective measures of rainfall in Australia. Similarly, Edwards et al. (2020) finds 178 179 among a Filipino sample that aggregated disaster exposure also correlated well with disaster exposure using EM-DAT data. 180

Y

605

0.01

Y

605

0.06

Y 605

0.27

181 We generate an individual-specific average exposure to climate hazards based on other participants

182 reports of hazards in the same community but not individual self-reports.

(1) aggregate_hazards_i = $\frac{\sum_{j \neq i} number_hazards - number_hazards_i}{N_{community} - 1}$ 183

184 On average, there is positive relationship between aggregate measure and individual self-reports of climate hazards (Pearson correlation r=0.14, p=0.00), indicating the idiosyncratic nature of hazards 185 as not all shocks affect the entire community in the same way. Thus, most of the variation in reported 186 187 climate hazards occurs within communities not between them. Our results for risk are robust to using 188 the aggregate measure, while the association with place identity and dependence is not. However, this 189 analysis is also less than ideal for two reasons. First, the aggregate measure in this analysis assigns 190 respondents who did report to have not experienced any hazards in the past five years on average with 2.6 hazards. Second, the interpretation of the model is different as we cannot net out common shocks 191 at the community level through the inclusion of village fixed effects with the aggregate measure. 192 While individual reports of climate hazards are prone to outliers, the aggregate measure takes most 193 of the variation in hazards within villages away. We think the grouping of reported hazards offers the 194 best compromise to understand individual responses (risk aversion, place attachment, aspirations) by 195 allowing individual variation in reported hazards (from none to 3 or more) within communities while 196 197 also rigorously constraining outliers.

Table S14. Preferences robustness check with aggregate measure of hazards

	Risk aversion	Place identity	Place dependence
VARIABLES	(1)	(2)	(3)
A garagata hazarda	0.11**	0.01	0.01
Aggregate nazards	(0.05)	(0.01)	(0.01)
Sacia aconomias	(0.03)	(0.07)	(0.03)
Econolo (-1)	0.14*	0.07	0.02
Feiliale (-1)	(0.08)	-0.07	-0.02
$\Lambda ga (yaars)$	(0.08)	(0.09)	(0.09)
Age (years)	(0.01)	$(0.01)^{1}$	(0,00)
Married (-1)	(0.00)	(0.00)	(0.00)
Married (-1)	-0.11	-0.12	(0.15)
Education	(0.11)	(0.10)	(0.13)
Education	-0.00	(0.01)	-0.01
II	(0.01)	(0.01)	(0.01)
Household size	-0.01	0.03	0.06*
	(0.04)	(0.02)	(0.03)
HH monthly income (log+1)	-0.06	0.07	-0.03
	(0.05)	(0.06)	(0.05)
HH asset value (log+1)	0.00	-0.01	-0.02
_	(0.02)	(0.03)	(0.03)
Damages extremes			
Land lost erosion (=1)	-0.06	0.02	-0.15
	(0.10)	(0.08)	(0.15)
House rebuild index (PCA)	-0.05**	0.03**	0.01
	(0.02)	(0.01)	(0.03)
Vietnam (=1)	-0.74***	-0.13	-0.25*
	(0.09)	(0.16)	(0.14)
Constant	0.32	-0.59	-0.24
	(0.36)	(0.60)	(0.52)
Cluster	16	16	16
Observations	605	605	605
Adjusted R-squared	0.10	0.00	0.06

199 Notes: Standard errors are clustered at the community level and bootstrapped with 500 replications to account for few clusters: *** p<0.01, ** p<0.05, * p<0.1

202

Table S15.Excluding all migrants in our sample

	Risk (z-	Identity (z-	Dependance (z-	Aspiration to move abroad
	score)	score)	score)	(=1)
VARIABLES	(1)	(2)	(3)	(4)
	\$ <i>1</i>			, <i>t</i>
Hazards: 1 or 2	0.19	0.10	0.15	0.09*
	(0.13)	(0.11)	(0.12)	(0.05)
Hazards: 3 or more	0.25**	0.32***	0.05	0.22***
	(0.12)	(0.11)	(0.12)	(0.05)
Socio-economics	× ,			
Female (=1)	0.11	0.02	-0.02	0.03
	(0.10)	(0.09)	(0.10)	(0.04)
Age (years)	0.01***	0.00	0.01**	-0.00
	(0.00)	(0.00)	(0.00)	(0.00)
Married (=1)	-0.23**	-0.02	0.28**	0.01
	(0.12)	(0.11)	(0.13)	(0.05)
Education	-0.00	0.00	-0.03**	0.01
	(0.01)	(0.01)	(0.01)	(0.01)
Household size	-0.05	0.03	-0.08	0.11***
	(0.05)	(0.05)	(0.05)	(0.03)
HH monthly income	0.03	-0.00	0.02	0.02
(log+1)				
	(0.03)	(0.04)	(0.03)	(0.01)
HH asset value (log+1)	-0.03	-0.01	0.05*	-0.02
	(0.03)	(0.02)	(0.03)	(0.01)
Damages extremes	()			· · · · · · · · · · · · · · · · · · ·
Land lost erosion (=1)	-0.08	-0.06	-0.30**	-0.07
(),	(0.13)	(0.10)	(0.13)	(0.05)
House rebuild index (PCA)	-0.04	-0.04	-0.01	-0.00
	(0.04)	(0.03)	(0.03)	(0.01)
Constant	0.24	-0.20	-0.36	, , , , , , , , , , , , , , , , , , ,
	(0.42)	(0.43)	(0.44)	
		· · ·		
Observations	433	433	433	433
Adjusted R-squared	0.12	0.01	0.10	
Pseudo R-Squared				0.32

203 Notes: Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

204

205

206 S3.3 Heterogeneous treatment effects

Table S16 shows the regression models underlying Fehler! Verweisquelle konnte nicht gefunden werden. reported in the main manuscript. Table S17 shows a related model using interaction terms using the pooled sample as a robustness check. Table S18 shows heterogeneous effects of reported

210 climate hazards depending on how far respondents live from the next urban center.

	Aspi	ration to r broad (=1	nove)	Aspiration to move to high-income destination (=1)		
	None	1 or 2	, 3+	None	1 or 2	3+
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
Risk aversion (z-score)	0.01	-0.03	-0.07**	0.02	0.01	-0.03
	(0.03)	(0.03)	(0.03)	(0.04)	(0.03)	(0.03)
Identity (z-score)	0.02	-0.09**	0.04	0.05	-0.02	0.11^{***}
	(0.04)	(0.04)	(0.03)	(0.05)	(0.05)	(0.03)
Dependence (z-score)	-0.03	0.06	-0.01	-0.05	-0.04	-0.06*
	(0.04)	(0.05)	(0.03)	(0.05)	(0.05)	(0.04)
Socio-economics						
Female (=1)	0.11*	0.03	0.02	-0.00	-0.01	0.10
	(0.06)	(0.06)	(0.06)	(0.08)	(0.07)	(0.06)
Age	-0.01**	-0.00	-0.00	-0.01**	-0.00	0.00
e	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Married $(=1)$	0.02	-0.05	0.09	0.16	0.03	0.12
	(0.09)	(0.07)	(0.07)	(0.11)	(0.08)	(0.08)
Education	-0.01	0.01	0.01	-0.00	0.02*	0.02***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
HH monthly income (log+1)	0.08**	0.06*	0.07	0.07	0.03	0.07
1111 menung meenne (rog 1)	(0.03)	(0.03)	(0.04)	(0.05)	(0.05)	(0.05)
HH asset value $(\log + 1)$	0.00	0.02	0.04*	0.01	0.06**	0.05*
The asset value (log 1)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)
Household size	-0.01	(0.02)	-0.01	(0.02)	-0.01	0.02
Trousenoid size	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Damagas	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
L and lost erosion (=1)	0.06	0.00	0.00	0.02	0 10**	0.07
Land lost crosion (-1)	(0.00)	-0.09	(0.00)	(0.02)	-0.19	-0.07
House rebuild index (\mathbf{PCA})	(0.08)	(0.08)	(0.08)	(0.09)	(0.09)	(0.07)
House rebuild lidex (FCA)	-0.03	-0.01	(0.03)	(0.01)	(0.01)	(0.02)
\mathbf{V}' (1)	(0.05)	(0.02)	(0.02)	(0.05)	(0.02)	(0.02)
vietnam (=1)	-0.0/****	-0.38	-0.39	-0.13	(0.00)	0.00
	(0.07)	(0.06)	(0.07)	(0.11)	(0.09)	(0.09)
Observations	164	203	238	164	202	238
Pseudo R-squared	0.38	0.30	0.20	0.10	0.10	0.16

Table S16.	Determinants	of migration	aspirations	across groups
1				

212 Notes: Estimates are average marginal effects calculated after probit regressions. Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

	Aspiration (=1)			High-income destination (=1)		
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
1 or 2 extremes	0.10**	0.10**	0.10**	0.02	0.02	0.03
	(0.04)	(0.04)	(0.04)	(0.05)	(0.05)	(0.05)
3 or more extremes	0.18***	0.17***	0.18***	0.09*	0.08	0.09*
	(0.04)	(0.04)	(0.04)	(0.05)	(0.05)	(0.05)
Risk aversion	0.01	-0.03	-0.03	0.04	-0.00	-0.00
	(0.03)	(0.02)	(0.02)	(0.04)	(0.02)	(0.02)
1 or 2 extremes * Risk aversion	-0.03			-0.03		
	(0.04)			(0.05)		
3 or more extremes * Risk aversion	-0.10**			-0.09*		
	(0.04)			(0.05)		
Place identity	0.01	0.02	0.01	0.06***	0.07	0.07***
	(0.02)	(0.04)	(0.02)	(0.02)	(0.04)	(0.02)
1 or 2 extremes * Place identity		-0.06			-0.08	
		(0.05)			(0.05)	
3 or more extremes * Place identity		0.03			0.04	
		(0.04)			(0.05)	
Place dependence	-0.01	-0.00	-0.01	-0.06**	-0.05**	-0.05
	(0.02)	(0.02)	(0.04)	(0.02)	(0.02)	(0.04)
1 or 2 extremes * Place dependence			-0.02			-0.06
			(0.05)			(0.05)
3 or more extremes * Place dependence			0.01			0.01
			(0.04)			(0.05)
Constant	0.39**	0.38**	0.39**	-0.31*	-0.32*	-0.31*
	(0.16)	(0.15)	(0.15)	(0.18)	(0.18)	(0.18)
Joint F-test interaction	0.00	0.00	0.00	0.19	0.02	0.25
Observations	605	605	605	604	604	604
R-squared	0.30	0.30	0.30	0.12	0.13	0.12
Adjusted R-squared	0.28	0.28	0.27	0.10	0.10	0.09

	TT /	<u>ee</u> (e	•	•	1 10	e
Table NT7	Heterogeneous	ettects tor	migration	asnirations	denending (n nreterences
	inclus vgcheous v	cificuly for	migration	aspirations	ucpenuing e	m prenerences

216 Notes: Controlling for socio-economics, damages and country-fixed effects. Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

218

215

219 We find evidence that communities closer to urban centers tend to be less affected by climate hazards than more rural communities. The predicted relationship between aggregate community reports of 220 221 climate hazards for a range of distances to the next urban center with more than 100,000 residents overlayed with a scatterplot of the underlying data (see Figure S3). The further a community is away 222 223 from an urban center the more hazards are reported on aggregate by (Pearson correlation r=0.81, 224 p=0.00). Using a median split shows that communities that are closer (below median distance to urban center of 27km) report on average only 2.1 hazards in the past five years while more rural 225 communities report 3.2 (p=0.00). 226

227

228

229 230 231 232 Notes: Marginsplot of predicted climate hazards for a range of distances to urban centers. The reported results from the regression model including the squared distance to urban centers yields slightly better model fit (adjusted R-squared = 0.68).

	Median Split: Dist urban > 27.13 km			Dist urban > 10 km				Continuous dist urban (0-1)				
VARIABLES	None	Low	Medium	High	None	Low	Medium	High	None	Low	Medium	High
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
1 or 2 extremes	-0.07	0.01	0.12**	-0.06	-0.09	-0.02	0.10*	0.00	-0.05	0.02	0.09*	-0.06
	(0.06)	(0.03)	(0.05)	(0.07)	(0.07)	(0.04)	(0.05)	(0.08)	(0.06)	(0.03)	(0.05)	(0.07)
3 or more extremes	-0.21***	-0.02	0.14***	0.09	-0.28***	-0.03	0.21***	0.11	-0.20***	-0.02	0.15***	0.07
	(0.06)	(0.03)	(0.05)	(0.07)	(0.07)	(0.04)	(0.06)	(0.09)	(0.06)	(0.03)	(0.05)	(0.08)
Distance urban > 27 km (=1)	0.01	-0.01	0.05	-0.05								
	(0.06)	(0.03)	(0.05)	(0.07)								
1 or 2 extremes * Distance urban	-0.05	0.03	-0.13*	0.15								
	(0.08)	(0.05)	(0.07)	(0.10)								
3 or more extremes * Distance urban	0.06	0.03	-0.11*	0.02								
	(0.08)	(0.04)	(0.06)	(0.10)								
Distance urban > 10 km (=1)					-0.02	-0.04	0.07	-0.02				
					(0.07)	(0.04)	(0.05)	(0.08)				
1 or 2 extremes * Distance urban					-0.02	0.08	-0.07	0.02				
					(0.09)	(0.05)	(0.07)	(0.10)				
3 or more extremes * Distance urban					0.15*	0.04	-0.19***	-0.01				
					(0.09)	(0.04)	(0.07)	(0.10)				
Normalized distance to urban (0-1)									0.12	-0.01	0.10	-0.22
									(0.12)	(0.05)	(0.07)	(0.13)
1 or 2 extremes * Norm distance urban									-0.17	0.04	-0.14	0.26
									(0.17)	(0.06)	(0.10)	(0.18)
3 or more extremes * Norm distance urban									0.06	0.03	-0.21***	0.12
									(0.15)	(0.05)	(0.08)	(0.16)
Constant	0.63***	0.02	0.67***	-0.32*	0.65***	0.03	0.65***	-0.33*	0.62***	0.02	0.66***	-0.29
	(0.16)	(0.06)	(0.12)	(0.18)	(0.16)	(0.06)	(0.12)	(0.18)	(0.16)	(0.06)	(0.12)	(0.18)
Joint E tast internation	0.00	0.65	0.07	0.15	0.00	0.40	0.01	0.28	0.00	0.42	0.01	0.15
Observations	604	604	604	604	604	604	604	0.30 604	604	0.43 604	604	604
Descurred	0.20	0.04	0.31	0.11	0.20	0.04	0.32	0.11	0.30	0.04	0.21	0.11
Adjusted D squared	0.29	0.08	0.31	0.11	0.30	0.08	0.52	0.11	0.30	0.08	0.31	0.11
Aujusieu K-squareu	0.20	0.05	0.50	0.09	0.20	0.00	0.50	0.08	0.20	0.03	0.29	0.09

Table S18.	Heterogeneous effects for migration aspirations depending on distance to urban centers

Controlling for socio-economics, damages and including country fixed effects. Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1

S4 International migration aspirations, likelihood and reasons

2 When respondents were asked where they would move abroad and why we find that they can aspire to 3 a life beyond their national borders: 88% of respondents in Bangladesh and 45% in Vietnam aspired to 4 move abroad (Figure Fehler! Verweisquelle konnte nicht gefunden werden.). All but one respondent 5 from Vietnam with an aspiration would like to move to a high-income country such as the USA, 6 Australia, any European country, or also South Korea and Singapore in East Asia, while only 44% 7 (n=94) of respondents from Bangladesh do. The main self-stated reasons for these aspirations are not 8 related to climate and environmental impacts, but rather because of the economic possibilities and 9 general living standard in these countries (see Table Fehler! Verweisquelle konnte nicht gefunden 10 werden.). About 10% that aspire to move to a high-income country (n=27) have relatives living there 11 that they want to reunite with. Nearly half of respondents from Bangladesh (n=98) aspire to move to 12 the MENA region for religious and economic reasons and the last 10% (n=25) aspire to move to India 13 because they have relatives there and its proximity to Bangladesh. Respondents that do not aspire to a 14 life beyond their national borders stated that they either had no desire to do so or never actually thought 15 about moving somewhere else.

Figure S4. International migration aspirations

Notes: The thickness of each flow between origin and destination is adjusted to the share of all respondents who aspire to
move to that region. Regions are colored based on the total share of respondents naming that region. Most respondents
aspire to move to high-income countries (East Asia n=128, North America n=84, Europe n=38, and Australia n=11),
followed by middle-income in the Middle East and North Africa (n=98) and least preferred are close by South Asian
countries (n=25), mainly India. Created in QGIS based on our collected data.

23 To get an idea about the perceived feasibility to act on these aspirations, we asked all respondents who 24 aspire to move abroad (n=385) how likely they think it is that they move abroad within the next three 25 years (see Figure S5, panel a). Overall, 71% of respondents with an aspiration assessed it as "very 26 unlikely" (n=274), while only 6% are optimistic (n=25) to move abroad. The other 22% (n=86) perceive 27 their chances as neither "very likely" nor "very unlikely". We find no large differences in the likelihood 28 of migration between the different destination regions. Figure S5 (panel b) shows the wealth distribution 29 over migration destinations. While it could be the case that people might simply not aspire to move abroad because they lack the funds, we find no evidence that respondents with no aspiration (median 30 31 \$20,619 PPP adjusted) are significantly less wealthy than respondents who aspire to move abroad (median \$20,882 PPP adjusted) (Mann-Whitney U-Test, z=-0.83, p=0.41). 32

Figure S5. Migration likelihood and financial feasibility

35 Notes: Panel a shows how likely respondents who aspire to move abroad think it is that they move to their aspired 36 destination in the next three years, considering all financial and legal obstacles. Panel b shows respondents' wealth 37 distribution by aspired destination regions clustered into low-, medium-, and high-cost destinations. The self-assessed value 38 of all household assets is used to approximate wealth and includes the following assets: livestock, immovable assets (land, 39 house), and other movable assets (car, boat, agricultural equipment). We lose 11 observations due to missing's in the 40 reported assets. Panel c plots self-stated migration costs for the named destination (x-axis) against respondents' asset value 41 divided by household size (y-axis). Named low-cost migration destinations include India and Pakistan, medium cost 42 destinations are MENA countries like Saudi Arabia or Oman, and high-cost destinations include Australia and countries in 43 Europe, North America, and East Asia (Japan, South Korea). Panel d shows respondents affordability, based on the 44 aggregate migration costs, to move to low-, medium-, and high-cost destinations by likelihood to act on their aspiration.

45 Being very certain to migrate within the next three years implies having enough wealth to do so. To 46 understand the ability of respondents to act upon their aspirations, we plot respondents' self-assessed 47 costs for their migration aspirations against their wealth (Figure S5, panel c). Respondents were asked to consider all possible costs of moving, including having enough money to support themselves in the 48 49 first month at the destination. For all respondents below the 45-degree line, the perceived migration 50 costs exceed their wealth. Overall, 35% of the respondents with an aspiration perceive to be able to 51 afford to move to the named country. Movements to high income destinations are perceived as more 52 costly (median \$10,771 PPP) than to medium- (median \$5,882 PPP) and low-income destinations 53 (median \$588 PPP). The standard deviations around these mean values reveal substantial difficulties 54 in estimating migration costs for respondents. Given that getting a visa or working permit involves

55 substantial payments to intermediaries and travel costs, estimates for high-cost destinations below 56 \$5,000 are unrealistic. Especially in Bangladesh, respondents seem to underestimate these costs, as 57 56% of respondents who aspire to move to North America estimated the costs to be less than \$5,000 58 PPP. While individual estimates of migration costs might be imprecise, aggregating them reveals a 59 realistic picture of migration costs to different destinations. The average perceived migration costs are, 60 for example, strongly correlated with the migration costs to the same destinations based on official 61 labor migration data from Bangladesh (Pearson-correlation r=0.75, p=0.00). In panel d, we show 62 where respondents could afford to go based on the aggregate migration costs. Overall, 11% (n=65) of 63 our respondents could not even afford to move to a low-income destination, 60% (n=370) could afford 64 to move to a low-cost and 19% (n=117) to a medium-income destination. Only 60 out of 613 (10%) 65 respondents could afford a move to a high-cost destination. Yet, only three of them assessed their 66 likelihood to move to their aspired high-income destination as "very likely" (South Africa, Australia, 67 Thailand).

	North	Europe	South	East	Australia	MENA	Total			
	America		Asia	Asia						
Estimated costs (PPP)	22266	21272	768	17252	17208	9196	15372			
Wealth adjusted for HH size	15434	8209	16546	10492	11289	4618	10240			
Affordability (costs/wealth)	0.33	0.26	0.92	0.35	0.55	0.31	0.37			
Open question: Any reasons for choosing that country?										
Religious	0.00	0.00	0.08	0.01	0.09	0.51	0.14			
Economic	0.39	0.42	0.04	0.27	0.27	0.27	0.30			
Social network	0.08	0.13	0.28	0.11	0.09	0.06	0.10			
Proximity	0.00	0.00	0.28	0.02	0.00	0.00	0.02			
Standard of life	0.40	0.32	0.04	0.31	0.36	0.06	0.25			
No reason	0.10	0.06	0.00	0.26	0.20	0.00	0.12			
Open question: What concrete steps would you have to take to move to this country legally?										
Passport	0.36	0.45	0.56	0.20	0.27	0.68	0.41			
Visa	0.35	0.58	0.40	0.29	0.36	0.53	0.40			
Language	0.26	0.11	0.00	0.30	0.27	0.06	0.19			
Money	0.10	0.13	0.04	0.11	0.27	0.17	0.13			
ID Card	0.20	0.08	0.04	0.28	0.09	0.04	0.16			
Ticket	0.00	0.03	0.00	0.00	0.09	0.07	0.02			
No step mentioned	0.19	0.22	0.36	0.32	0.10	0.12	0.23			
N	84	38	25	128	11	98	384			

 Table S19.
 Reasons and steps for international migration by destination region

Notes: The table shows only responses for people that named a country in response to the question: "If you could migrate abroad, where would you go and why?" Respondents that did not name a place abroad when asked where they would migrate abroad most often mentioned "I want to live in Vietnam/Bangladesh" or "never thought about that". All categories reported for the open questions were created based on a content analysis of the responses (multiple categories could be named by respondents).

74